Dynamic Programming

Outline:
- General Principles
- Easy Examples – Fibonacci, Licking Stamps
- Meatier examples
 - Weighted interval scheduling
 - And others

Some Algorithm Design Techniques, I

General overall idea
- Reduce solving a problem to a smaller problem or problems of the same type

Greedy algorithms
- Used when one needs to build something a piece at a time
- Repeatedly make the greedy choice - the one that looks the best right away
- Usually fast if they work (but often don’t)

Some Algorithm Design Techniques, II

Divide & Conquer
- Reduce problem to one or more sub-problems of the same type
- Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)
Some Algorithm Design Techniques, III

Dynamic Programming
Give a solution of a problem using smaller sub-problems, e.g. a recursive solution
Useful when the same sub-problems show up again and again in the solution

Dynamic Programming History
Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it’s impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

A very simple case: Computing Fibonacci Numbers
Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0, F_1 = 1$

Recursive algorithm:
Fibo(n)
 if n=0 then return(0)
 else if n=1 then return(1)
 else return(Fibo(n-1)+Fibo(n-2))

Call tree - start
Full call tree

Memo-ization (Caching)

Save all answers from earlier recursive calls
Before recursive call, test to see if value has already been computed
Dynamic Programming

\textit{NOT} memoized; instead, convert memoized alg from a recursive one to an iterative one
(top-down \rightarrow bottom-up)

Fibonacci - Memoized Version

initialize: F[i] \leftarrow undefined for all i
F[0] \leftarrow 0
F[1] \leftarrow 1
FiboMemo(n):
\[\text{if}(F[n] \text{ undefined}) \{\]
\[\quad F[n] \leftarrow \text{FiboMemo}(n-2)+\text{FiboMemo}(n-1)\]
\[\}\]
return(F[n])

Fibonacci - Dynamic Programming Version

FiboDP(n):
F[0] \leftarrow 0
F[1] \leftarrow 1
for i=2 to n do
\[F[i] \leftarrow F[i-1]+F[i-2]\]
end
return(F[n])

For this problem, keeping only last 2 entries instead of full array suffices, but about the same speed
Dynamic Programming

Useful when
Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated
The solution to whole problem can be solved without knowing the internal details of how the sub-problems are solved
“principle of optimality”

Making change

Given:
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N
Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
Give as many as possible of the next biggest denomination

Licking Stamps

Given:
Large supply of 5¢, 4¢, and 1¢ stamps
An amount N
Problem: choose fewest stamps totaling N

How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
Better Idea

Theorem: If last stamp in an opt sol has value \(v \), then previous stamps are opt sol for \(N-v \).

Proof: if not, we could improve the solution for \(N \) by using opt for \(N-v \).

Alg: for \(i = 1 \) to \(n \):

\[
M(i) = \min \begin{cases}
0 & i=0 \\
1+M(i-5) & i \geq 5 \\
1+M(i-4) & i \geq 4 \\
1+M(i-1) & i \geq 1
\end{cases}
\]

where \(M(i) = \text{min number of stamps totaling } i \text{¢} \)

New Idea: Recursion

\[
M(i) = \min \begin{cases}
0 & i=0 \\
1+M(i-5) & i \geq 5 \\
1+M(i-4) & i \geq 4 \\
1+M(i-1) & i \geq 1
\end{cases}
\]

Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up:

for \(i = 0, \ldots, N \) do \(M[i] = \min \begin{cases}
0 & i=0 \\
1+M[i-5] & i \geq 5 \\
1+M[i-4] & i \geq 4 \\
1+M[i-1] & i \geq 1
\end{cases} \)

Finding How Many Stamps

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M[i])</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time: \(O(N) \)
Finding Which Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + \text{Min}(3, 1, 3) = 2

Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

\text{TraceBack}(i):
 \begin{align*}
 &\text{if } i = 0 \text{ then return}; \\
 &\text{for } d \text{ in } \{1, 4, 5\} \text{ do} \\
 &\quad \text{if } M[i] = 1 + M[i - d] \\
 &\quad \text{then break; print } d; \\
 &\text{TraceBack}(i - d);
 \end{align*}

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems

“Repeated Subproblems”
The same subproblems arise in various ways

6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Dynamic Programming: Binary Choice

Notation. $OPT(j)$ = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - collect profit v_j
 - can’t use incompatible jobs \{ $p(j)$ + 1, $p(j)$ + 2, ..., j - 1 \}
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., $p(j)$

- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise}
\end{cases}$$
Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \cdots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

\[
\text{Compute-Opt}(j) \{
\text{if }(j = 0) \quad \text{return } 0
\text{else} \quad \text{return } \max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1))
\}
\]

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \cdots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

for \(j = 1 \) to \(n \)

\[M[j] = \text{empty} \quad \text{global array} \]

\[M[0] = 0 \]

\[
\text{M-Compute-Opt}(j) \{
\text{if } (M[j] \text{ is empty})
M[j] = \max(v_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1))
\text{return } M[j]
\}
\]

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes \(O(n \log n) \) time.

- Sort by finish time: \(O(n \log n) \).
- Computing \(p(\cdot) \): \(O(n \log n) \) via sorting by start time.
- \(\text{M-Compute-Opt}(j) \): each invocation takes \(O(1) \) time and either
 - (i) returns an existing value \(M[j] \)
 - (ii) fills in one new entry \(M[j] \) and makes two recursive calls
- Progress measure \(\Phi = \# \text{nonempty entries of } M[] \).
 - initially \(\Phi = 0 \), throughout \(\Phi \leq n \).
 - (ii) increases \(\Phi \) by 1 \(\implies \) at most 2\(n \) recursive calls.
- Overall running time of \(\text{M-Compute-Opt}(n) \) is \(O(n) \).

Remark. \(O(n) \) if jobs are pre-sorted by start and finish times.
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing.

```plaintext
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
  if (j = 0)
    output nothing
  else if (v_j + M[p(j)] > M[j-1])
    print j
    Find-Solution(p(j))
  else
    Find-Solution(j-1)
}
```

• # of recursive calls ≤ n ⇒ O(n).

6.3 Segmented Least Squares

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```plaintext
Input: n, s_1, ..., s_n, e_1, ..., e_n, v_1, ..., v_n
Sort jobs by finish times so that e_1 ≤ e_2 ≤ ... ≤ e_n.
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
  M[0] = 0
  for j = 1 to n
    M[j] = max(v_j + M[p(j)], M[j-1])
}
```

Segmented Least Squares

Least squares.
• Foundational problem in statistic and numerical analysis.
• Given n points in the plane: (x_1, y_1), (x_2, y_2), ..., (x_n, y_n).
• Find a line y = ax + b that minimizes the sum of the squared error:

```
SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2
```

Solution. Calculus ⇒ min error is achieved when

\[
da = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2}, \quad b = \frac{\sum y_i - a \sum x_i}{n}
\]
Segmented Least Squares

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given \(n \) points in the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \) with \(x_1 < x_2 < \ldots < x_n \), find a sequence of lines that minimizes \(f(x) \).

Q. What’s a reasonable choice for \(f(x) \) to balance accuracy and parsimony?
- \(\frac{1}{\text{number of lines}} \cdot \text{goodness of fit} \)

Dynamic Programming: Multiway Choice

Notation.
- \(\text{OPT}(j) = \text{minimum cost for points } p_1, p_{i+1}, \ldots, p_j \)
- \(e(i, j) = \text{minimum sum of squares for points } p_i, p_{i+1}, \ldots, p_j \)

To compute \(\text{OPT}(j) \):
- Last segment uses points \(p_i, p_{i+1}, \ldots, p_j \) for some \(i \).
- Cost = \(e(i, j) + c + \text{OPT}(i-1) \).

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{i < j} \{ e(i, j) + c + \text{OPT}(i-1) \} & \text{otherwise}
\end{cases}
\]

Segmented Least Squares: Algorithm

INPUT: \(n, p_1, \ldots, p_n, c \)

Segmented-Least-Squares() {
 \(\text{M}[0] = 0 \)
 for \(j = 1 \) to \(n \)
 for \(i = 1 \) to \(j \)
 compute the least square error \(e_{ij} \) for the segment \(p_i, \ldots, p_j \)
 \(\text{M}[j] = \min_{1 \leq i \leq j} \{ e_{ij} + c + \text{M}[i-1] \} \)
 return \(\text{M}[n] \)
}

Running time. \(O(n^3) \). \(\text{M}[n] \) can be improved to \(O(n^2) \) by pre-computing various statistics.
- Bottleneck = computing \(e(i, j) \) for \(O(n^2) \) pairs, \(O(n) \) per pair using previous formula.
6.4 Subset-Sum Problem

Subset-Sum Problem

- Input: a set of items \(\{1, \ldots, n\} \) with weights \(w_i \) and a capacity \(W \)
- Output: A subset \(S \) of items whose weights sum to \(\leq W \)
- Goal: Maximize the sum of the weights of the items chosen

Dynamic Programming: False Start

Def. \(\text{OPT}(i) = \text{max weight of a subset of items } 1, \ldots, i \).

- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{1, 2, \ldots, i-1\} \)

- Case 2: \(\text{OPT} \) selects item \(i \).
 - accepting item \(i \) does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before \(i \), we don’t even know if we have enough room for \(i \)

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. \(\text{OPT}(i, w) = \text{max weight of a subset of items } 1, \ldots, i \text{ with weight limit } w \).

- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(\{1, 2, \ldots, i-1\} \) using weight limit \(w \)

- Case 2: \(\text{OPT} \) selects item \(i \).
 - new weight limit = \(w - w_i \)
 - \(\text{OPT} \) selects best of \(\{1, 2, \ldots, i-1\} \) using this new weight limit

\[
\text{OPT}(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
\text{OPT}(i-1, w) & \text{if } w_i > w \\
\max \{ \text{OPT}(i-1, w), w_i + \text{OPT}(i-1, w-w_i) \} & \text{otherwise}
\end{cases}
\]
Subset-Sum Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```plaintext
Input: n, W, w₁, ..., wᵣ, v₁, ..., vᵣ
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
        if (wᵢ > w)
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], wᵢ + M[i-1, w-wᵢ]}
return M[n, W]
```

Subset-Sum Problem: Running Time

Running time. \(\Theta(n \cdot W) \).
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Subset-Sum is NP-complete. [Chapter 8]