CSE 4I7, Winter 20I2

Dynamic Programming

Ben Birnbaum
Widad Machmouchi

Some Algorithm Design
 Techniques, I

General overall idea
Reduce solving a problem to a smaller problem or problems of the same type
Greedy algorithms
Used when one needs to build something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
Usually fast if they work (but often don't)

Dynamic Programming

Outline:

General Principles

Easy Examples - Fibonacci, Licking Stamps
Meatier examples
Weighted interval scheduling
And others

Some Algorithm Design Techniques, II

Divide \& Conquer

Reduce problem to one or more sub-problems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Some Algorithm Design Techniques, III

Dynamic Programming

Give a solution of a problem using smaller subproblems, e.g. a recursive solution
Useful when the same sub-problems show up again and again in the solution

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Call tree - start

Fibonacci - Memoized Version

initialize: $\mathrm{F}[\mathrm{i}] \leftarrow$ undefined for all i
$\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[\mathrm{I}] \leftarrow \mathrm{I}$
FiboMemo(n):
if($\mathrm{F}[\mathrm{n}]$ undefined) $\{$
$\mathrm{F}[\mathrm{n}] \leftarrow$ FiboMemo(n-2)+FiboMemo(n-I)
\}
return($\mathrm{F}[\mathrm{n}]$)

Memo-ization (Caching)

Save all answers from earlier recursive calls
Before recursive call, test to see if value has already been computed
Dynamic Programming
NOT memoized; instead, convert memoized alg from a recursive one to an iterative one (top-down \rightarrow bottom-up)

Fibonacci - Dynamic Programming Version

FiboDP(n):
$\mathrm{F}[0] \leftarrow 0$
$\mathrm{F}[\mathrm{I}] \leftarrow \mathrm{I}$
for $\mathrm{i}=2$ to n do
$\mathrm{F}[\mathrm{i}] \leftarrow \mathrm{F}[\mathrm{i}-\mathrm{I}]+\mathrm{F}[\mathrm{i}-2]$
end
For this problem,
keeping only last
2 entries instead of full array
suffices, but about
the same speed
return(F[n])

Dynamic Programming

Useful when

Same recursive sub－problems occur repeatedly Parameters of these recursive calls anticipated The solution to whole problem can be solved without knowing the internal details of how the sub－problems are solved
＂principle of optimality＂

Licking Stamps

Given：

Large supply of $5 \not \subset, 4 \not \subset$ ，and $I \phi$ stamps
An amount N
Problem：choose fewest stamps totaling N

Making change

Given：
Large supply of $1 \not \subset, 5 \not \subset, 10 \not \subset, 25 \not \subset, 50 \not \subset$ coins An amount N
Problem：choose fewest coins totaling N
Cashier＇s（greedy）algorithm works：
Give as many as possible of the next biggest denomination

How to Lick 27申

\＃of $5 申$ stamps	\＃of $4 \not \subset$ stamps	\＃of I申 stamps	total number
5	0	2	7
4	1	3	8
3	3	0	6

Morals：Greed doesn＇t pay；success of＂cashier＇s alg＂depends on coin denominations

Better Idea

Theorem: If last stamp in an opt sol has value v , then previous stamps are opt sol for $\mathrm{N}-\mathrm{v}$. Proof: if not, we could improve the solution for N by using opt for $\mathrm{N}-\mathrm{v}$. Alg: for $\mathrm{i}=\mathrm{I}$ to n :
\(M(i)=\min \left\{\begin{array}{ll}0 \& i=0

1+M(i-5) \& i \geq 5

1+M(i-4) \& i \geq 4

1+M(i-1) \& i \geq 1\end{array}\right\} \quad\)| where $M(i)=\min$ |
| :--- |
| number of stamps |
| totaling i申 |

Another New Idea:

Avoid Recomputation

Tabulate values of solved subproblems
Top-down: "memoization"
Bottom up:

$$
\text { for } \mathrm{i}=0, \ldots, \mathrm{~N} \text { do } M[i]=\min \left\{\begin{array}{ll}
0 & \left.\begin{array}{l}
0 \\
1+M[i-5] \\
1+M i[i-4] \\
1>5 \\
1+M[i-1] \\
1>2
\end{array}\right\}
\end{array}\right\}
$$

Time: $\mathrm{O}(\mathrm{N})$

New Idea: Recursion

Time: $>3^{\text {N/5 }}$

Finding How Many Stamps

$1+\operatorname{Min}(3,1,3)=2$

Finding Which Stamps:

 Trace-Back

$$
\underline{\mathbf{I}}+\operatorname{Min}(3, \underline{\mathbf{I}}, \mathbf{3})=\underline{\mathbf{2}}
$$

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?
"Optimal Substructure"
Optimal solution contains optimal subproblems
"Repeated Subproblems"
The same subproblems arise in various ways

Trace-Back

Way I: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what's needed

```
TraceBack(i):
        if i == 0 then return;
        for d in {1, 4, 5} do
            if M[i] == 1 + M[i - d]
            then break;
        print d;
        TraceBack(i - d);
```


6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.
Def. $p(j)=$ largest index i < j such that $j o b i$ is compatible with j.
$E x: p(8)=5, p(7)=3, p(2)=0$.

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Dynamic Programming: Binary Choice

Notation. $\operatorname{OPT}(\mathrm{j})=$ value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: OPT selects job j
- collect profit v_{j}
- can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
optimal substructure
- Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$
O P T(j)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+O P T(p(j)), O P T(j-1)\right\} & \text { otherwise }
\end{array}\right.
$$

Brute force algorithm.

```
Input: n, s}\mp@subsup{\textrm{s}}{1}{},\ldots,\mp@subsup{\mathbf{s}}{\textrm{n}}{},\mp@subsup{\textrm{f}}{1}{},\ldots,\mp@subsup{f}{\textrm{n}}{},\mp@subsup{\textrm{v}}{1}{},\ldots,\mp@subsup{v}{\textrm{n}}{
```

Input: n, s}\mp@subsup{\textrm{s}}{1}{},···,\mp@subsup{\mathbf{s}}{\textrm{n}}{},\mp@subsup{\textrm{f}}{1}{},···,\mp@subsup{f}{\textrm{n}}{},\mp@subsup{\textrm{v}}{1}{},···,\mp@subsup{v}{\textrm{n}}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Compute p(1), p(2), ..., p(n)
Compute-Opt(j) {
Compute-Opt(j) {
if (j = 0)
if (j = 0)
| (j = 0)
| (j = 0)
else
else
return max (v
return max (v
}

```

\section*{Weighted Interval Scheduling: Memoization}

Memoization. Store results of each sub-problem in a cache; lookup as needed.
```

Input: n, s}\mp@subsup{\mathbf{s}}{1}{},···,\mp@subsup{\mathbf{s}}{\textrm{n}}{},\mp@subsup{\textrm{f}}{1}{},···,\mp@subsup{f}{\textrm{n}}{},\mp@subsup{\textrm{v}}{1}{},···,\mp@subsup{\textrm{v}}{\textrm{n}}{
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{
Compute p(1), p(2), .., p(n)
for j = 1 to n
M[j] = empty
M[0] = 0 global array
M-Compute-Opt(j) {
if (M[j] is empty)
M[j] = max (vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
}

```

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \(\Rightarrow\) exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.


Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes \(O(n \log n)\) time.
- Sort by finish time: \(O(n \log n)\).
- Computing \(p(\cdot): O(n \log n)\) via sorting by start time.
- M-Compute-Opt (j): each invocation takes \(O(1)\) time and either
- (i) returns an existing value \(\mathrm{M}[j]\)
- (ii) fills in one new entry \(m[j]\) and makes two recursive calls
- Progress measure \(\Phi=\#\) nonempty entries of m[] .
- initially \(\Phi=0\), throughout \(\Phi \leq n\).
- (ii) increases \(\Phi\) by \(1 \Rightarrow\) at most \(2 n\) recursive calls.
- Overall running time of m-Compute-Opt (n) is \(O(n)\). .

Remark. \(O(n)\) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion. What if we want the solution itself?
A. Do some post-processing.
```

Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
if (j = 0)
output nothing

```

```

 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
 }

```
- \# of recursive calls \(\leq n \Rightarrow O(n)\).
```

Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq···\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), .., p(n)
Iterative-Compute-Opt {
m[0] = 0
for j = 1 to n
M[j] = max (v j + M[p(j)], M[j-1])
}

```

\section*{Segmented Least Squares}

\section*{Least squares.}
- Foundational problem in statistic and numerical analysis.
- Given \(n\) points in the plane: \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\).
- Find \(a\) line \(y=a x+b\) that minimizes the sum of the squared error
\[
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
\]


Solution. Calculus \(\Rightarrow\) min error is achieved when
\[
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
\]

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes \(f(x)\).
Q. What's a reasonable choice for \(f(x)\) to balance accuracy and parsimony? \(\uparrow\)
number of lines


\section*{Dynamic Programming: Multiway Choice}

Notation.
- OPT \((\mathrm{j})=\) minimum cost for points \(\mathrm{p}_{1}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}\).
- \(e(i, j)=\) minimum sum of squares for points \(p_{i}, p_{i+1}, \ldots, p_{j}\)

To compute OPT(j):
- Last segment uses points \(p_{i}, p_{i+1}, \ldots, p_{j}\) for some \(i\).
- Cost \(=e(i, j)+c+\) OPT \((i-1)\).
\[
\operatorname{OPT}(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}
\]

\section*{Segmented least squares.}
- Points lie roughly on a sequence of several line segments.
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes:
- the sum of the sums of the squared errors \(E\) in each segment - the number of lines \(L\)
- Tradeoff function: \(E+c L\), for some constant \(c>0\).


\section*{Segmented Least Squares: Algorithm}
```

INPUT: n, p
Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n
for i = 1 to
compute the least square error e}\mp@subsup{e}{ij}{}\mathrm{ for
the segment }\mp@subsup{p}{i}{},···,\mp@subsup{p}{j}{
for j = 1 to n
M[j] = min
return M[n]
}

```

Running time. \(O\left(n^{3}\right)\). - can be improved to \(O\left(n^{2}\right)\) by pre-computing various statistics
- Bottleneck = computing e \((i, j)\) for \(O\left(n^{2}\right)\) pairs, \(O(n)\) per pair using previous formula.

\subsection*{6.4 Subset-Sum Problem}

\section*{Dynamic Programming: False Start}

Def. OPT(i) \(=\) max weight of a subset of items \(1, \ldots, i\).
- Case 1: OPT does not select item i.
- OPT selects best of \(\{1,2, \ldots, i-1\}\)
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Subset-Sum problem.
- Input: a set of items \(\{1, \ldots, n\}\) with weights \(w_{i}\) and a capacity \(W\)
- Output: A subset \(S\) of items whose weights sum to \(\leq W\)
- Goal: Maximize the sum of the weights of the items chosen

Def. OPT(i, w) = max weight of a subset of items \(1, \ldots, i\) with weight limit w.
- Case 1: OPT does not select item i.
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using weight limit w
- Case 2: OPT selects item i.
- new weight limit \(=w-w_{i}\)
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using this new weight limit
\(\operatorname{OPT}(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ \operatorname{OPT}(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \{\operatorname{OPT}(i-1, w), & \left.w_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right\} \\ \text { otherwise }\end{cases}\)

Knapsack. Fill up an \(n\)-by-W array.
```

Input: n, W, w
for w = 0 to w
m[0, w] = 0
for i = 1 to n
for w = 1 to w
if (}\mp@subsup{w}{i}{}>>w
M[i, w] = M[i-1, w]
else
M[i, w] = max {M[i-1, w], wi}+M[i-1, w-wi]
return M[n, W]

```

Running time. \(\Theta(n W)\).
- Not polynomial in input size!
. "Pseudo-polynomial."
- Decision version of Subset-Sum is NP-complete. [Chapter 8]```

