Divide and Conquer

Reading: 5.1, 5.4-5.5, 13.5

Divide-and-Conquer

Divide-and-conquer

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage

- Break up problem of size n into two equal parts of size \(\frac{1}{2}n \).
- Solve two parts recursively.
- Combine two solutions into overall solution in \textit{linear time}.

Consequence

- Brute force: \(n^2 \).
- Divide-and-conquer: \(n \log n \).

\textit{Divide et impera. Veni, vidi, vici.}

- \textit{Julius Caesar}

Binary search for roots (bisection method)

\[\text{Bisection}(a, b, \epsilon) \]

- if \((a-b) < \epsilon\) then
 - return(a)
- else
 - \[c \leftarrow \frac{(a+b)}{2} \]
 - if \(f(c) \leq 0 \) then
 - return(Bisection(c, b, \epsilon))
 - else
 - return(Bisection(a, c, \epsilon))

Time Analysis:

- At each step we halved the size of the interval.
- It started at size \(b-a \)
- It ended at size \(\epsilon \)

\# of calls to \(f \) is \(\log_2 \left(\frac{b-a}{\epsilon} \right) \)
Old favorites

Binary search
- One subproblem of half size plus one comparison
- Recurrence \(T(n) = T\left(\frac{n}{2}\right) + 1 \) for \(n \geq 2 \)
 \(T(1) = 0 \)
 So \(T(n) \) is \(\log_2 n + 1 \)

Mergesort
- Two subproblems of half size plus merge cost of \(n - 1 \) comparisons
- Recurrence \(T(n) \leq 2T\left(\frac{n}{2}\right) + n - 1 \) for \(n \geq 2 \)
 \(T(1) = 0 \)
 Roughly \(n \) comparisons at each of \(\log_2 n \) levels of recursion
 So \(T(n) \) is roughly \(2n \log_2 n \)

Proof by Recursion Tree

\[
\begin{aligned}
T(n) &= T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + 1 \\
&\leq 2T\left(\frac{n}{2}\right) + n - 1 \\
&\leq 2T\left(\frac{n}{2}\right) + n - \log_2 n \\
&\leq 2T\left(\frac{n}{2}\right) + n - 2 \\
&\leq 2T\left(\frac{n}{2}\right) + n + 2 \\
&\leq 2^n + 2n + 2 \\
&\leq 2n \log_2 n + 2n + 2 \\
&\leq 2n \log_2 n + 2n \\
&\leq 2n \log_2 n \\
\end{aligned}
\]

Proof by Telescoping

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

Pf. For \(n \geq 1 \):

\[
\begin{aligned}
T(n) &= \frac{2T(n/2)}{n/2} + 1 \\
&= \frac{T(n/2)}{n/2} + 1 + 1 \\
&= \frac{T(n/4)}{n/4} + 1 + 1 + 1 \\
&\vdots \\
&= \frac{\log_2 n}{n/2} + 1 + \ldots + 1 \\
&= \log_2 n
\end{aligned}
\]

Proof by Induction

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

Pf. (by induction on \(n \))
- Base case: \(n = 1 \)
- Inductive hypothesis: \(T(n) = n \log_2 n \)
- Goal: show that \(T(2n) = 2n \log_2 (2n) \)

\[
\begin{aligned}
T(2n) &= 2T(n) + 2n \\
&= 2n \log_2 n + 2n \\
&= 2n(\log_2 (2n) + 1) + 2n \\
&= 2n \log_2 (2n)
\end{aligned}
\]
Analysis of Mergesort Recurrence

Claim. If \(T(n) \) satisfies the following recurrence, then \(T(n) \leq n \lceil \log n \rceil \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
\frac{n}{2} T(n/2) + \frac{n}{2} & \text{otherwise}
\end{cases}
\]

Pf. (by induction on \(n \))

- **Base case**: \(n = 1 \).
- **Define** \(n_1 = \lceil n/2 \rceil \), \(n_2 = \lfloor n/2 \rfloor \).
- **Induction step**: assume true for \(1, 2, \ldots, n-1 \).

\[
T(n) \leq T(n_1) + T(n_2) + n
\]

\[
\leq n_1 \lceil \log n_1 \rceil + n_2 \lceil \log n_2 \rceil + n
\]

\[
\leq n_1 \lfloor \log n_1 \rfloor + n_2 \lfloor \log n_2 \rfloor + n
\]

\[
= n_1 \lfloor \log n \rfloor + n_2 \lfloor \log n \rfloor + n
\]

\[
= n \lfloor \log n \rfloor + n
\]

\[
\leq n \lfloor \log n \rfloor + n
\]

\[
\leq n \lceil \log n \rceil + n
\]

\[
\leq n \lfloor \log n \rfloor + n
\]

\[
\Rightarrow \lfloor \log n \rfloor \leq \lceil \log n \rceil - 1
\]

\[
T(n) \leq n \lceil \log n \rceil
\]

\[
\Rightarrow \text{if } n = 1 \text{ then } T(1) = c
\]

\[
\Rightarrow \text{otherwise}
\]

Proving Master recurrence

\[
T(n) = a \cdot T(n/b) + c \cdot n^k
\]

Problem size

- \(n \)
- \(n/b \)
- \(n/b^2 \)
- \(b \)
- \(1 \)

Proving Master recurrence

\[
T(n) = a \cdot T(n/b) + c \cdot n^k
\]

Problem size

- \(n \)
- \(n/b \)
- \(n/b^2 \)
- \(b \)
- \(1 \)

Master Divide and Conquer Recurrence

Let \(a \) and \(b \) be positive constants.

If \(T(n) \leq a \cdot T(n/b) + c \cdot n^k \) for \(n > b \) then

- if \(a > b^k \) then \(T(n) \) is \(\Theta(n^{k \cdot \log_b a}) \)
- if \(a < b^k \) then \(T(n) \) is \(\Theta(n^k) \)
- if \(a = b^k \) then \(T(n) \) is \(\Theta(n^k \log n) \)

Works even if it is \(\lceil n/b \rceil \) instead of \(n/b \).
Proving Master Recurrence

Problem size: \(T(n) = a \cdot T(n/b) + c \cdot n^k \)

<table>
<thead>
<tr>
<th>Problem size</th>
<th># probs</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td></td>
<td>(cn^k)</td>
</tr>
<tr>
<td>(n/b)</td>
<td></td>
<td>(c \cdot a \cdot n^k / b^k)</td>
</tr>
<tr>
<td>(n/b^2)</td>
<td></td>
<td>(c \cdot a^2 \cdot n^k / b^{2k})</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td>(c \cdot n^k (a/b^k)^d)</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(c \cdot a^d)</td>
</tr>
</tbody>
</table>

\(T(1) = c \)

Geometric Series

\[
S = t + tr + tr^2 + ... + tr^{n-1}
\]

\[
r \cdot S = tr + tr^2 + ... + tr^{n-1} + tr^n
\]

\[
(r-1)S = tr^n - t
\]

So \(S = (r^n - 1)/(r - 1) \) if \(r \neq 1 \).

Simple rule:
- If \(r = 1 \) then \(S \) is a constant times the largest term in series

Total Cost

Geometric series
- ratio: \(a/b^k \)
- \(d+1 = \log_b n \) terms
- first term: \(cn^k \), last term: \(ca^d \)

If \(a/b^k = 1 \)
- all terms are equal \(T(n) = \Theta(n^k \log n) \)

If \(a/b^k < 1 \)
- first term is largest \(T(n) = \Theta(n^k) \)

If \(a/b^k > 1 \)
- last term is largest \(T(n) = \Theta(a^d) = \Theta(\alpha^{\log_b n}) = \Theta(n^{\log_b a}) \)
 (To see this take \(\log_b \) of both sides)

13.5 Median Finding and Quicksort
Order problems: Find the kth largest

- **Runtime models**
 - Machine Instructions
 - Comparisons

- **Maximum**
 - $O(n)$ time
 - $n-1$ comparisons

- **2nd Largest**
 - $O(n)$ time
 - $? \text{ Comparisons}$

- **kth largest for $k = n/2$**
 - Easily done in $O(n \log n)$ time with sorting
 - How can the problem be solved in $O(n)$ time?

QuickSelect(k, n) - find the $k\text{-th}$ largest from a list of length n

Divide and Conquer

Linear time solution: $T(n) = n + T(\alpha n)$ for $\alpha < 1$

QuickSelect algorithm - in linear time, reduce the problem from selecting the $k\text{-th}$ largest of n to the $j\text{-th}$ largest of αn, for $\alpha < 1$

QuickSelect(k, S)

- Choose element x from S
- $S_1 = \{y \in S \mid y < x\}$
- $S_2 = \{y \in S \mid y = x\}$
- $S_3 = \{y \in S \mid y > x\}$
- if $|S_1| \geq k$
 - return QuickSelect(k, S_1)
- else if $|S_1| + |S_2| \geq k$
 - return y in S_2
- else
 - return QuickSelect($k - |S_1| - |S_2|, S_3$)

"Choose an element $x"$: Random Selection

Ideally, we would choose an x in the middle, to reduce both sets in half and guarantee progress. But it’s enough to choose x at random

Consider a call to QuickSelect(k, S), and let S' be the elements passed to the recursive call.

With probability at least $\frac{1}{2}$, $|S'| < \frac{3}{4}|S|$

⇒ On average only 2 recursive calls before the size of S' is at most $3n/4$

```
bad x good x good x bad x
```

elements of S listed in sorted order

Announcements

- Homework 4 will be out later today, due date in 2 weeks on Wednesday 2/15
- The midterm is next Wednesday 2/8/2012
- Divide and conquer is not included in the midterm but recurrences are included.
- We will post sample exercises for recurrences on the webpage along with their solutions for practice.
- Remember NO outside sources (Google, other textbooks, people not in the class, etc.) may not be consulted on the homework.

Expected runtime is $O(n)$

Given x, one pass over S to determine S_L, S_E, and S_R and their sizes: cn time.
- Expect $2cn$ cost before size of S' drops to at most $3|S|/4$

Let $T(n)$ be the expected running time: $T(n) \leq T(3n/4) + 2cn$

By Master's Theorem, $T(n) = O(n)$

Making the algorithm deterministic
- In $O(n)$ time, find an element that guarantees that the larger set in the split has size at most $\frac{1}{4}n$
- BFPRT (Blum-Floyd-Pratt-Rivest-Tarjan) Algorithm

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

```java
RandomizedQuicksort(S) { if |S| = 0 return choose a splitter $a_i \in S$ uniformly at random foreach $(a \in S)$ { if ($a < a_i$) put $a$ in $S_-$ else if ($a > a_i$) put $a$ in $S_+$ RandomizedQuicksort(S_-) output $a_i$ RandomizedQuicksort(S_+) }
}
```

Remark. Can implement in-place.
$O(\log n)$ extra space

Expected run time for QuickSort: “Global analysis”

Count comparisons
- a_i, a_j - elements in positions i and j in the final sorted list. p_{ij} the probability that a_i and a_j are compared

Expected number of comparisons: $\sum p_{ij}$

Prob a_i and a_j are compared:
- If a_i and a_j are compared then it must be during the call when they end up in different subproblems
 - Before that, they aren’t compared to each other
 - After they aren’t compared to each other
- During this step they are only compared if one of them is the pivot
- Since all elements between a_i and a_j are also in the subproblem this is 2 out of at least $j-i+1$ choices

Lemma: $P_{ij} \leq 2/(j-i+1)$
Theorem. Expected # of comparisons is $O(n \log n)$.

\[\sum_{1 \leq i < j \leq n} \frac{2}{j+1} = 2 \sum_{j=2}^{n} \frac{1}{j} \leq 2n \sum_{j=2}^{n} \frac{1}{j} \approx 2n \int_{x=1}^{n} \frac{1}{x} \, dx = 2n \ln n \]

Probability that i and j are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65n$.

Ex. If $n = 1$ million, the probability that randomized quicksort takes less than $4n \ln n$ comparisons is at least 99.94%.

Chebyshev's inequality.

\[\Pr[|X - \mu| \geq k\delta] \leq \frac{1}{k^2} \]

Closest Pair of Points

Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems
- Molecular modeling, air traffic control
- Special case of nearest neighbor, Euclidean MST, Voronoi
- Fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $O(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < \(\delta \).

Observation: only need to consider points within \(\delta \) of line L.

Sort points in \(2\delta \)-strip by their y coordinate.

Only check distances of those within 11 positions in sorted list!
Closest Pair of Points

Def. Let \(s_i \) be the point in the \(2\delta \)-strip, with the \(i \)th smallest y-coordinate.

Claim. If \(|i - j| \geq 12\), then the distance between \(s_i \) and \(s_j \) is at least \(\delta \).

Pf.
- No two points lie in same \(\frac{1}{2}\delta \)-by-\(\frac{1}{2}\delta \) box.
- Two points at least 2 rows apart have distance \(\geq 2(\frac{1}{2}\delta) \).

Corollary. For each point \(s_i \), we only need to check its distance to the 11 points that precede it in the y-coordinate order.

Fact. Still true if we replace 11 with 6.

Closest Pair Algorithm

```
Closest-Pair(p_1, ..., p_n) {
    Compute separation line \( L \) such that half the points are on one side and half on the other side.
    \( \delta_1 = \text{Closest-Pair(left half)} \)
    \( \delta_2 = \text{Closest-Pair(right half)} \)
    \( \delta = \min(\delta_1, \delta_2) \)
    Delete all points further than \( \delta \) from separation line \( L \)
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than \( \delta \), update \( \delta \).
    return \( \delta \).
}
```

5.5 Integer Multiplication

Running time.

\[
T(n) \leq 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)
\]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don’t sort points in strip from scratch each time.
- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

\[
T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)
\]
Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.
- \(O(n)\) bit operations.

Multiply. Given two n-digit integers a and b, compute a \(\times\) b.
- Brute force solution: \(\Theta(n^2)\) bit operations.

Multiplying Faster

If you analyze our usual grade school algorithm for multiplying numbers
- \(\Theta(n^2)\) time
- On real machines each "digit" is, e.g., 32 bits long but still get \(\Theta(n^2)\) running time with this algorithm when run on n-bit multiplication

We can do better!
- We’ll describe the basic ideas by multiplying polynomials rather than integers
- Advantage is we don’t get confused by worrying about carries at first

Notes on Polynomials

These are just formal sequences of coefficients
- when we show something multiplied by \(x^k\) it just means shifted \(k\) places to the left - basically no work

Usual polynomial multiplication

\[
\begin{array}{l}
4x^2 + 2x + 2 \\
x^2 - 3x + 1 \\
\hline
4x^2 + 2x + 2 \\
-12x^3 - 6x^2 - 6x \\
\hline
4x^4 + 2x^3 + 2x^2 \\
4x^4 - 10x^3 + 0x^2 - 4x + 2
\end{array}
\]

Polynomial Multiplication

Given:
- Degree \(n-1\) polynomials P and Q
 - \(P = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1}\)
 - \(Q = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-2} x^{n-2} + b_{n-1} x^{n-1}\)

Compute:
- Degree \(2n-2\) Polynomial \(P \cdot Q\)
 - \(P \cdot Q = a_0 b_0 \cdot (a_0 b_1 + a_1 b_0) \cdot x \cdot (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 \cdot \ldots \cdot (a_{n-2} b_{n-2} + a_{n-1} b_{n-2}) x^{2n-3} + a_{n-1} b_{n-1} x^{2n-2}\)

Obvious Algorithm:
- Compute all \(a_0 b_j\) and collect terms
- \(\Theta(n^3)\) time
Naive Divide and Conquer

Assume \(n=2^k \)

- \(P = (a_0 + a_1 x + a_2 x^2 + \ldots + a_{k-2} x^{k-2} + a_{k-1} x^{k-1}) + (a_k + a_{k+1} x + \ldots + a_{n-2} x^{n-2} + a_{n-1} x^{n-1}) x^k \)

 \(= P_0 + P_1 x^k \) where \(P_0 \) and \(P_1 \) are degree \(k-1 \) polynomials

- Similarly \(Q = Q_0 + Q_1 x^k \)

- \(PQ = (P_0 \cdot P_1 x^k)(Q_0 + Q_1 x^k) = P_0 Q_0 + (P_1 Q_0 + P_0 Q_1) x^k + P_1 Q_1 x^{2k} \)

- 4 sub-problems of size \(k=n/2 \) plus linear combining

\[T(n) = 4 T(n/2) + cn \]

Solution \(T(n) = \Theta(n^2) \)

Karatsuba's Algorithm

A better way to compute the terms

- Compute
 - \(A \leftarrow P_0 Q_0 \)
 - \(B \leftarrow P_1 Q_1 \)
 - \(C \leftarrow (P_0 + P_1)(Q_0 + Q_1) = P_0 Q_0 + P_0 Q_1 + P_1 Q_0 + P_1 Q_1 \)

- Then
 - \(P_0 Q_1 + P_1 Q_0 \equiv C - A - B \)
 - So \(PQ = A + (C - A - B)x^k + Bx^{2k} \)

- 3 sub-problems of size \(n/2 \) plus \(O(n) \) work

\[T(n) = 3 T(n/2) + cn \]

\[T(n) = \Theta(n^{\alpha}) \text{ where } \alpha = \log_2 3 = 1.59... \]

Multiplication

Polynomials

- Naive: \(\Theta(n^2) \)
- Karatsuba: \(\Theta(n^{\log_2 3}) \)
- Best known: \(\Theta(n \log n) \)
 - "Fast Fourier Transform"
 - FFT widely used for signal processing

Integers

- Similar, but some ugly details re: carries, etc. gives \(\Theta(n \log n \log \log n) \),
 - mostly unused in practice except for symbolic manipulation systems like Maple

Matrix Multiplication

Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} \\
 a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} + a_{34}b_{43} \\
 a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]

for \(i=1\) to \(n\)

\[
\text{endfor}
\]

for \(j=1\) to \(n\)

\[
C[i,j] \leftarrow 0
\]

\[
\text{endfor}
\]

for \(k=1\) to \(n\)

\[
C[i,j] = C[i,j] + A[i,k] \cdot B[k,j]
\]

\[
\text{endfor}
\]

\[
\text{endfor}
\]

\(n^3\) multiplications, \(n^3\) additions
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{bmatrix} =
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
 a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{bmatrix}
\]

Simple Divide and Conquer

\[
T(n) = 8T(n/2) + 4(n/2)^2 = 8T(n/2) + n^2
\]

\[
\frac{5}{2} > 2 \quad \text{so} \quad T(n) \text{ is } \Theta(n^{\log_2 8}) = \Theta(n^2)
\]

Strassen's Divide and Conquer Algorithm

Strassen's algorithm

- Multiply 2x2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)

- \(T(n) = 7T(n/2) + cn^2 - 7 \cdot 2^2 \) so \(T(n) \) is \(O(n^{\log_2 7}) \) which is \(O(n^{2.81}) \)

- Fastest algorithms theoretically use \(O(n^{2.376}) \) time

- Not practical but Strassen's is practical provided calculations are exact and we stop recursion when matrix has size about 100 (maybe 10)

The algorithm

\[
P_1 \leftarrow A_{12}(B_{11} + B_{21}) ; \quad P_2 \leftarrow A_{21}(B_{12} + B_{22})
\]

\[
P_3 \leftarrow (A_{11} - A_{12})B_{11} ; \quad P_4 \leftarrow (A_{22} - A_{21})B_{22}
\]

\[
P_5 \leftarrow (A_{22} - A_{12})(B_{21} - B_{22}) ; \quad P_6 \leftarrow (A_{11} - A_{21})(B_{12} - B_{11})
\]

\[
P_7 \leftarrow (A_{21} - A_{12})(B_{11} + B_{22})
\]

7 multiplications.
18 = 10 + 8 additions (or subtractions).

\[
C_{11} \leftarrow P_1 + P_3 ; \quad C_{12} \leftarrow P_2 + P_3 + P_6 + P_7
\]

\[
C_{21} \leftarrow P_1 + P_4 + P_5 + P_7 ; \quad C_{22} \leftarrow P_2 + P_4
\]
Fast Matrix Multiplication in Practice

Implementation issues.
- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n \approx 128$.

Common misperception: "Strassen is only a theoretical curiosity."
- Advanced Computation Group at Apple Computer reports 8x speedup on G4 Velocity Engine when $n \approx 2,500$.
- Range of instances where it’s useful is a subject of controversy.

Remark. Can “Strassenize” $Ax=b$, determinant, eigenvalues, and other matrix ops.

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969] $\Theta(n^{\log_2 7}) = O(n^{2.81})$

Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr, 1971] $\Theta(n^2) = O(n^{2.376})$

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible. $\Theta(n^6) = O(n^{2.373})$

Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980] $\Theta(n^{3.62} \log n) = O(n^{2.80})$

Decimal wars.
- December, 1979: $O(n^{2.521813})$.
- January, 1980: $O(n^{2.521801})$.

Fast Matrix Multiplication in Theory

Best known. $O(n^{2.373})$ [V. Williams, Nov 2011]

Conjecture. $O(n^{2+\varepsilon})$ for any $\varepsilon > 0$.

Caveat. not practical but Strassen’s is practical provided calculations are exact and we stop recursion when matrix has size about 100 (maybe 10).