CSE 417: Algorithms and Computational Complexity

Winter 2012 Graphs and Graph Algorithms

Based on slides by Larry Ruzzo

1

Graphs Reading: 3.1-3.6

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Goals

Graphs: Definitions, examples, utility, terminology, representation

Traversal: Breadth- & Depth-first search

Three Algorithms:

Connected Components Bipartiteness Topological sort 3.1 Basic Definitions and Applications

Graphs: Objects & Relationships

An extremely important formalism for representing (binary) relationships

Exam Scheduling:

Classes

Two are related if they have students in common

Traveling Salesperson Problem:

Cities

Two are related if can travel *directly* between them

Undirected Graphs

Undirected graph. G = (V, E)

V = nodes.

E = edges between pairs of nodes.

Captures pairwise relationship between objects.

Graph size parameters: n = |V|, m = |E|.

Social Network

Node: people.

Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Ecological Food Web

Food web graph.

Node = species.

Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Vertices vs # Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?

Since

every edge connects two different vertices (no loops), and no two edges connect the same two vertices (no multi-edges),

It must be true that:

$$0 \leq m \leq n(n-1)/2 = O(n^2)$$

More Cool Graph Lingo

- A graph is called *sparse* if m << n², otherwise it is *dense* Boundary is somewhat fuzzy; O(n) edges is certainly sparse, Ω(n²) edges is dense.
- Sparse graphs are common in practice
 - E.g., all planar graphs are sparse (m \leq 3n-6, for n \geq 3)

Q: which is a better run time, O(n+m) or $O(n^2)$?

A: $O(n+m) = O(n^2)$, but n+m usually way better!

Graph Representation: Adjacency Matrix

- Adjacency matrix. n-by-n matrix with A_{uv} = 1 if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².
 - Checking if (u, v) is an edge takes $\Theta(1)$ time.
 - Identifying all edges takes $\Theta(n^2)$ time.

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

Two representations of each edge.

Space proportional to m + n.

Checking if (u, v) is an edge takes O(deg(u)) time.

Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

- Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.
- Def. A path is simple if all nodes are distinct.
- Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a **tree** if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

3.2 Graph Traversal

Graph Traversal

Learn the basic structure of a graph "Walk," <u>via edges</u>, from a fixed starting vertex s to all vertices reachable from s

Being *orderly* helps. Two common ways: Breadth-First Search Depth-First Search

Breadth-First Search

Idea: Explore from s in all possible directions, layer by layer.

Theorem. For each i, L_i consists of all nodes at distance (i.e., min path length) exactly i from s.

Cor: There is a path from s to t iff t appears in some layer.

Breadth First Search: Example

(a)

(b)

20

BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

```
BFS(s)
Mark s "discovered"
queue = {s}
while queue not empty
u = remove_first(queue)
for each edge {u,x}
if (x is undiscovered)
mark x discovered
append x on queue
mark u fully explored
```


Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(??) time if the graph is given by its adjacency representation.

- Pf. Easy to prove $O(n^2)$ running time:
 - After a node is removed from the queue, it never appears in the queue again : while loop runs ≤ n times
 - when we consider node u, there are ≤ n incident edges (u, v), and we spend O(1) processing each edge

Breadth First Search: Analysis

Actually runs in O(m + n) time:

- when we consider node u, there are deg(u) incident edges (u, v)
- total time processing edges is $\Sigma_{u \in V} \text{deg}(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

Homework Rules

Homework 2 is out, due next Wednesday in class.

When asked to describe an algorithm, you should give:

- 1. An English description of the algorithm idea
- 2. A pseudocode if the English description is not sufficient to communicate the fundamental details
- 3. (Optional) An example to illustrate the idea
- 4. A clear correctness proof if the proof is not a part of the algorithm description
- 5. A clear analysis of the running

Homework Rules

When asked to prove a statement

- 1. Make sure all your variables are defined
- 2. Never write an argument you are not convinced in because this may damage your brain
- 3. If the proof is long, explain the proof idea before explaining the details

Format: Submit each problem on a SEPARATE sheet(s) of paper with your name and the problem number. Your homework will be disregarded if it is not in this format.

Due date rule: Late homeworks are not accepted.

BFS Application: Shortest Paths

BFS Application: Shortest Paths

Why fuss about trees?

- Trees are simpler than graphs
- So, this is often a good way to approach a graph problem: find a "nice" tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (next) finds a different tree, but it also has an interesting structure...
Depth-First Search

Idea: Follow the first path you find as far as you can go Back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using a stack

Depth First Search: Example

DFS(s) Implementation

```
DFS(s):
  Initialize S to be a stack with one element s
  While S is not empty
    Take a node u from S
    If Explored[u] = false then
       Set Explored[u] = true
       For each edge (u, v) incident to u
         Add v to the stack S
       Endfor
    Endif
  Endwhile
```

Depth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf. Similar ideas to BFS analysis

BFS vs DFS

Similarities:

- Both visit x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree

Differences:

- In the BFS tree, levels reflect minimum distance from the root; not the case for DFS
- In BFS, all non-tree edges join vertices on the same or adjacent levels while in DFS, all non-tree edges join a vertex and one of its descendants/ancestors in the DFS tree

BFS vs DFS

BFS tree

DFS tree

Graph Search Application: Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

Graph Search Application: Connected Component

Connected component. Find all nodes reachable from s.

```
R will consist of nodes to which s has a pathInitially R = \{s\}While there is an edge (u, v) where u \in R and v \notin RAdd v to REndwhileit's safe to add v
```

Theorem. Upon termination, R is the connected component containing s.

BFS = explore in order of distance from s.

DFS = explore in a different way.

3.4 Testing Bipartiteness

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

Stable marriage: men = red, women = blue. Scheduling: machines = red, jobs = blue.

a bipartite graph

Testing Bipartiteness

Given a graph G, is it bipartite?

Many graph problems become:

- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

- **Lemma.** Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.
 - (i) No edge of G joins two nodes of the same layer, and G is bipartite.
 - (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

(i) No edge of G joins two nodes of the same layer, and G is bipartite.

Pf.

- Suppose no edge joins two nodes in the same layer.
- By the properties of a BFS tree, this implies all edges join nodes on adjacent levels.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.
- All edges have differently colored endpoints.

(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

z = lca(x, y)

Ζ

Layer L_i

Layer L_i

Pf.

- Suppose (x, y) is an edge with x, y in same level L_i. (
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider the cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is 1 + (j-i) + (j-i), which is odd. (x, y) path from path from y to z z to x

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. G = (V, E)

Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

Directedness of graph is crucial.

Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Graph search. BFS extends naturally to directed graphs.

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

strongly connected

not strongly connected

Strong Connectivity

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf.

- \Rightarrow Follows from definition.
- Let u and v be arbitrary nodes in G
- 1. Path from u to v: concatenate u-s path with s-v path.
- 2. Path from v to u: concatenate v-s path with s-u path.

Strong Connectivity: Algorithm

Theorem. We can determine if G is strongly connected in O(m + n) time.

Pf.

- 1. Pick any node s.
- 2. Run BFS from s in G.
- 3. Run BFS from s in G^{rev}.

reverse orientation of every edge in G

- 4. Return true iff all nodes reached in both BFS executions.
- 5. Correctness follows immediately from previous lemma.

3.6 DAGs and Topological Ordering

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

Precedence Constraints

Edge (v_i , v_j) means task v_i must occur before v_j .

Applications

- Course prerequisites: course v_i must be taken before v_i
- Compilation: must compile module v_i before v_i
- Job Workflow: output of job v_i is part of input to job v_i
- Manufacturing or assembly: sand it before you paint it...
- Spreadsheet evaluation: cell v_i depends on v_i

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v₁, ..., v_n and that G also has a directed cycle C.
- Let v_i be the lowest-indexed node in C, and let v_j be the node in C just before v_i; thus (v_i, v_j) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and v₁, ..., v_n is a topological order, we must have j < i, a contradiction.

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

Lemma. If G is a DAG, then G has a node with no incoming edges.

- Pf. (by contradiction)
 - Suppose that G is a DAG and every node has at least one incoming edge.
 - Pick any node v, and begin following edges backward from v.
 Since v has at least one incoming edge (u, v) we can walk backward to u. Repeat same process for u
 - Repeat until we visit a node, say w, twice.
 - Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- G { v } is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, G { v } has a topological ordering.
- Place v first in topological ordering; then append nodes of G - { v } in topological order. This is valid since v has no incoming edges.

Topological Sort Algorithm

To compute a topological ordering of G: Find a node v with no incoming edges and order it first Delete v from G Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological Sorting Algorithm

Maintain the following:

count[w] = (remaining) number of incoming edges to node w

Initialization:

count[w] = 0 for all w count[w]++ for all edges (v,w) $S = S \cup \{w\} \text{ for all } w \text{ with } count[w]==0$

Main loop:

```
while S not empty
remove some v from S
make v next in topo order
for all edges from v to some w
decrement count[w]
add w to S if count[w] hits 0
```

Time: O(m + n) (assuming edge-list representation of graph)

Topological order:

Topological order: v₁

Topological order: v_1 , v_2

Topological order: v_1 , v_2 , v_3

Topological order: v_1 , v_2 , v_3 , v_4
Topological Ordering Algorithm: Example

Topological order: v_1 , v_2 , v_3 , v_4 , v_5

Topological Ordering Algorithm: Example

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6

Topological Ordering Algorithm: Example

Topological order: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 .