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Goals

Graphs: Definitions, examples, utility, terminology, 

representation

Traversal: Breadth- & Depth-first search

Three Algorithms:

Connected Components

Bipartiteness

Topological sort
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3.1  Basic Definitions and 

Applications
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Graphs: Objects & Relationships

An extremely important formalism for representing 

(binary) relationships

Exam Scheduling:

Classes

Two are related if they have students in common

Traveling Salesperson Problem:

Cities

Two are related if can travel directly between them



Undirected Graphs

Undirected graph.  G = (V, E)

V = nodes.

E = edges between pairs of nodes.

Captures pairwise relationship between objects.

Graph size parameters:  n = |V|, m = |E|.
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V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

n = 8

m = 11



Social Network

Reference:  Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

Node:  people.

Edge:  relationship between two people.
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Ecological Food Web

Food web graph.

Node = species. 

Edge = from prey to predator.

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff



Let G be an undirected graph with n vertices and m 

edges.  How are n and m related?

Since 

every edge connects two different vertices (no loops), and no 

two edges connect the same two vertices (no multi-edges), 

It must be true that:

0 ≤ m ≤ n(n-1)/2 = O(n2)
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# Vertices vs # Edges
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More Cool Graph Lingo

A graph is called sparse if m << n2, otherwise it is dense

Boundary is somewhat fuzzy; O(n) edges is certainly sparse, 

Ω(n2) edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse (m ≤ 3n-6, for n ≥ 3)

Q: which is a better run time, O(n+m) or O(n2)?

A: O(n+m) = O(n2), but n+m usually way better!
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Graph Representation: Adjacency Matrix

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is 

an edge.

Two representations of each edge.

Space proportional to n2.

Checking if (u, v) is an edge takes Θ(1) time. 

Identifying all edges takes Θ(n2) time.

1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 0

2 1 0 1 1 1 0 0 0

3 1 1 0 0 1 0 1 1

4 0 1 0 1 1 0 0 0

5 0 1 1 1 0 1 0 0

6 0 0 0 0 1 0 0 0

7 0 0 1 0 0 0 0 1

8 0 0 1 0 0 0 1 0 11



Graph Representation:  Adjacency List

Adjacency list.  Node indexed array of lists.

Two representations of each edge.

Space proportional to m + n.

Checking if (u, v) is an edge takes O(deg(u)) time.

Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7 12



Def.  A path in an undirected graph G = (V, E) is a sequence P of 

nodes v1, v2, …, vk-1, vk with the property that each consecutive 

pair vi, vi+1 is joined by an edge in E.

Def.  A path is simple if all nodes are distinct.

Def.  An undirected graph is connected if for every pair of nodes u 

and v, there is a path between u and v.
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Paths and Connectivity
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Cycles

Def.  A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 

2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1
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Trees

Def.  An undirected graph is a tree if it is connected and 

does not contain a cycle.

Theorem.  Let G be an undirected graph on n nodes. Any 

two of the following statements imply the third.

G is connected.

G does not contain a cycle.

G has n-1 edges.



Rooted tree.  Given a tree T, choose a root node r and 

orient each edge away from r.

Importance.  Models hierarchical structure.
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Rooted Trees

a tree the same tree, rooted at 1

v

parent of v

child of v

root r



3.2  Graph Traversal
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Graph Traversal

Learn the basic structure of a graph

“Walk,” via edges, from a fixed starting vertex s to all 

vertices reachable from s

Being orderly helps.  Two common ways:

Breadth-First Search

Depth-First Search
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Breadth-First Search

Idea:  Explore from s in all possible directions, layer by layer.

BFS algorithm.

L0 = { s }.

L1 = all neighbors of L0.

L2 = all nodes not in L0 or L1, and having an edge to a node in L1.

Li+1 = all nodes not in earlier layers, and having an edge to a node in Li.

Theorem.  For each i, Li consists of all nodes at distance 
(i.e., min path length) exactly i from s.  

Cor: There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1
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Breadth First Search: Example

L0

L1

L2

L3



BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s) 

Mark s "discovered"

queue = {s}

while queue not empty

u = remove_first(queue)

for each edge {u,x}

if (x is undiscovered) 

mark x discovered

append x on queue

mark u fully explored
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BFS(v)

Queue:

1  
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BFS(v)

Queue:

2 3  
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BFS(v)

Queue:

3 4
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BFS(v)

Queue:

4 5 6 7
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BFS(v)

Queue:

5 6 7 8 9
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BFS(v)

Queue:

8 9 10 11
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BFS(v)

Queue:

10 11 12 13
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BFS(v)

Queue:



Breadth First Search:  Analysis

Theorem.  The above implementation of BFS runs in O(??)
time if the graph is given by its adjacency 
representation.

Pf.  Easy to prove O(n2) running time:

• After a node is removed from the queue, it never 
appears in the queue again : while loop runs ≤ n 
times

• when we consider node u, there are ≤ n incident 
edges (u, v),  and we spend O(1) processing each 
edge
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Breadth First Search:  Analysis

Actually runs in O(m + n) time:

• when we consider node u, there are deg(u) 
incident edges (u, v)

• total time processing edges is Σu∈V deg(u) = 2m    

each edge (u, v) is counted exactly twice

in sum: once in deg(u) and once in deg(v)
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Homework Rules

Homework 2 is out, due next Wednesday in class.

When asked to describe an  algorithm, you should give:

1. An English description of the algorithm idea

2. A pseudocode if the English description is not           

sufficient to communicate the fundamental details

3. (Optional) An  example to illustrate the idea

4. A clear correctness proof if the proof is not a part 

of the algorithm description

5. A clear analysis of the running
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Homework Rules

When asked to prove a statement

1. Make sure all your variables are defined

2. Never write  an argument  you are not  convinced in 

because  this may damage your brain

3. If the proof is long, explain the proof idea before  

explaining  the details

Format: Submit each problem on a SEPARATE sheet(s) of 

paper with your name and the problem number. Your 

homework will be disregarded if it is not in this format.

Due date rule: Late homeworks are not accepted.
33
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BFS Application: Shortest Paths

0

1

2

3

4

can label by distances from start

all edges connect same/adjacent levels

Tree (solid edges) 

gives shortest 

paths from 

start vertex
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Tree (solid edges) 

gives shortest 

paths from 

start vertex

BFS Application: Shortest Paths

0

1

2

3

4 can label by distances from start

all edges connect same/adjacent levels
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Why fuss about trees?

• Trees are simpler than graphs

• So, this is often a good way to approach a graph 
problem: find a “nice” tree in the graph, i.e., one such 
that non-tree edges have some simplifying structure

• E.g., BFS finds a tree s.t. level-jumps are minimized

DFS (next) finds a different tree, but it also has an 
interesting structure…
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Depth-First Search

Idea: Follow the first path you find as far as you can go

Back up to last unexplored edge when you reach a dead 

end, then go as far you can 

Naturally implemented using a stack
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Depth First Search: Example
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DFS(s) Implementation
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Depth First Search: Analysis

Theorem.  The above implementation of BFS runs in O(m 
+ n) time if the graph is given by its adjacency 
representation.

Pf. Similar ideas to BFS analysis



BFS vs DFS

Similarities: 

• Both visit x if and only if there is a path in G from v to 
x.

• Edges into then-undiscovered vertices define a tree

Differences:

• In the BFS tree, levels reflect minimum distance from 
the root; not the case for DFS

• In BFS, all non-tree edges join vertices on the 
same or adjacent levels while in DFS, all non-tree 
edges join a vertex and one of its 
descendants/ancestors in the DFS tree
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BFS vs DFS

BFS tree DFS tree
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Graph Search Application: Connected 

Component

Connected component.  Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
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Graph Search Application: Connected 

Component

Connected component.  Find all nodes reachable from s.

Theorem.  Upon termination, R is the connected component 
containing s.

BFS = explore in order of distance from s.

DFS = explore in a different way.

s

u v

R

it's safe to add v
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3.4  Testing Bipartiteness



Bipartite Graphs

Def.  An undirected graph G = (V, E) is bipartite if the 

nodes can be colored red or blue such that every edge 

has one red and one blue end.

Applications.

Stable marriage:  men = red, women = blue.

Scheduling:  machines = red, jobs = blue.

a bipartite graph
46



Testing Bipartiteness

Given a graph G, is it bipartite?

Many graph problems become:

• easier if the underlying graph is bipartite (matching)

• tractable if the underlying graph is bipartite (independent set)

Before attempting to design an algorithm, we need to 

understand structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G
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An Obstruction to Bipartiteness

Lemma.  If a graph G is bipartite, it cannot contain an 

odd length cycle.

Pf.  Not possible to 2-color the odd cycle, let alone G.

bipartite

(2-colorable)
not bipartite

(not 2-colorable)
48



Lemma.  Let G be a connected graph, and let L0, …, Lk be 

the layers produced by BFS starting at node s.  Exactly 

one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is 

bipartite.

(ii)  An edge of G joins two nodes of the same layer, and G 

contains an odd-length cycle (and hence is not bipartite).

Bipartite Graphs

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3
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(i)   No edge of G joins two nodes of the same layer, and 

G is bipartite.

Pf.  

• Suppose no edge joins two nodes in the same layer.

• By the properties of a BFS tree, this implies all edges join 

nodes on adjacent levels.

• Bipartition:  red = nodes on odd levels, blue = nodes on 

even levels.

• All edges have differently colored endpoints.

Bipartite Graphs

Case (i)

L1 L2 L3
50



(ii)  An edge of G joins two nodes of the same layer, and G 

contains an odd-length cycle (and hence is not 

bipartite).

Pf. 

• Suppose (x, y) is an edge with x, y in same level Lj.

• Let z = lca(x, y) = lowest common ancestor.

• Let Li be level containing z.

• Consider the cycle that takes edge from x to y,

then path from y to z, then path from z to x.

• Its length is  1  +   (j-i)  +  (j-i),  which is odd.  

Bipartite Graphs

z = lca(x, y)

(x, y) path from

y to z

path from

z to x



Obstruction to Bipartiteness

Corollary.  A graph G is bipartite iff it contain no odd 

length cycle.

5-cycle C

bipartite

(2-colorable)
not bipartite

(not 2-colorable)
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3.5  Connectivity in Directed 

Graphs



Directed Graphs

Directed graph.  G = (V, E)

Edge (u, v) goes from node u to node v.

Ex.  Web graph - hyperlink points from one web page to 

another.

Directedness of graph is crucial.

Modern web search engines exploit hyperlink structure to rank 

web pages by importance.
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Graph Search

Graph search.  BFS extends naturally to directed graphs.

Directed reachability.  Given a node s, find all nodes 

reachable from s.

Directed s-t shortest path problem.  Given two node s 

and t, what is the length of the shortest path between 

s and t?
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Strong Connectivity

Def.  Node u and v are mutually reachable if there is a 

path from u to v and also a path from v to u.

Def.  A graph is strongly connected if every pair of nodes 

is mutually reachable.
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strongly connected not strongly connected



Strong Connectivity

Lemma.  Let s be any node.  G is strongly connected iff every 

node is reachable from s, and s is reachable from every 

node.

Pf.

⇒ Follows from definition.

⇐ Let u and v be arbitrary nodes in G

1. Path from u to v: concatenate u-s path with s-v path.

2. Path from v to u: concatenate v-s path with s-u path.  

s

v

u
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Strong Connectivity:  Algorithm

Theorem. We can determine if G is strongly connected in 

O(m + n) time.

Pf.

1. Pick any node s.

2. Run BFS from s in G.

3. Run BFS from s in Grev.

4. Return true iff all nodes reached in both BFS 

executions.

5. Correctness follows immediately from previous 

lemma.   

reverse orientation of every edge in G
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3.6  DAGs and Topological 

Ordering



Directed Acyclic Graphs

Def.  An DAG is a directed graph that contains no directed 

cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must 

precede vj.

Def.  A topological order of a directed graph G = (V, E) is an 

ordering of its nodes as v1, v2, …, vn so that for every edge 

(vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Precedence Constraints

Edge (vi, vj) means task vi must occur before vj.

Applications

• Course prerequisites:  course vi must be taken 

before vj

• Compilation: must compile module vi before vj

• Job Workflow:  output of job vi is part of  input to 

job vj

• Manufacturing or assembly: sand it before you 

paint it…

• Spreadsheet evaluation: cell vj depends on vi
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Pf.  (by contradiction)

• Suppose that G has a topological order v1, …, vn and that G 

also has a directed cycle C.

• Let vi be the lowest-indexed node in C, and let vj be the node 

in C just before vi; thus (vj, vi) is an edge.

• By our choice of i, we have i < j.

• On the other hand, since (vj, vi) is an edge and v1, …, vn is a 

topological order, we must have j < i, a contradiction.   

v1 vi vj vn

the supposed topological order:  v1, C, vn

the directed cycle C
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Q.  Does every DAG have a topological ordering?

Q.  If so, how do we compute one?
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a node with no incoming 

edges.

Pf.  (by contradiction)

• Suppose that G is a DAG and every node has at least one 

incoming edge. 

• Pick any node v, and begin following edges backward from v.  

Since v has at least one incoming edge (u, v) we can walk 

backward to u. Repeat same process for u

• Repeat until we visit a node, say w, twice.

• Let C denote the sequence of nodes encountered between 

successive visits to w.  C is a cycle.   

w x u v
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a topological ordering.

Pf.  (by induction on n)

• Base case:  true if n = 1.

• Given DAG on n > 1 nodes, find a node v with no 

incoming edges.

• G - { v } is a DAG, since deleting v cannot create cycles.

• By inductive hypothesis, G - { v } has a topological 

ordering.

• Place v first in topological ordering; then append nodes 

of G - { v } in topological order. This is valid since v has 

no incoming edges.   65



Topological Sort Algorithm

DAG

v

66
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Topological Sorting Algorithm
Maintain the following:

count[w] = (remaining) number of incoming edges to node w

S = set of (remaining) nodes with no incoming edges

Initialization:  

count[w] = 0 for all w

count[w]++ for all edges (v,w) O(m + n)

S = S ∪ {w} for all w with count[w]==0

Main loop: 

while S not empty

remove some v from S

make v next in topo order                               O(1) per node

for all edges from v to some w O(1) per edge

decrement count[w]

add w to S if count[w] hits 0

Time: O(m + n)  (assuming edge-list representation of graph)



v1

Topological Ordering Algorithm:  

Example

Topological order:  

v2 v3

v6 v5 v4

v7 v1
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v2

Topological Ordering Algorithm:  

Example

Topological order:  v1

v2 v3

v6 v5 v4

v7

69



v3

Topological Ordering Algorithm:  

Example

Topological order:  v1, v2

v3

v6 v5 v4

v7
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Topological Ordering Algorithm:  

Example

Topological order:  v1, v2, v3

v6 v5 v4

v7
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Topological Ordering Algorithm:  

Example

Topological order:  v1, v2, v3, v4

v6 v5

v7
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Topological Ordering Algorithm:  

Example

Topological order:  v1, v2, v3, v4, v5

v6

v7
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Topological Ordering Algorithm:  

Example

Topological order:  v1, v2, v3, v4, v5, v6

v7
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Topological Ordering Algorithm:  

Example

Topological order:  v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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