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Slides	  adapted	  from	  Larry	  Ruzzo,	  
Steve	  Tanimoto,	  and	  Kevin	  Wayne	  	  

CSE	  417:	  Algorithms	  and	  
Computa8onal	  Complexity	  

•  Instructors:	  
– Ben	  Birnbaum	  (Computer	  Science	  Ph.D.)	  
–  	  Widad	  Machmouchi	  (Computer	  Science	  Ph.D.)	  
–  (Mostly)	  team-‐teaching	  by	  unit	  

•  TAs:	  
– Nara	  Kim	  (Computer	  Science	  B.S.)	  
– Alex	  Piet	  (Applied	  Math	  M.S.)	  
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cs.wash
ington.

edu/417
 

Other	  resources	  
(all	  linked	  from	  website)	  

•  Catalyst	  discussion	  board	  (use	  it!)	  
•  Course	  email	  list	  
•  Schedule	  
•  Office	  hours	  
– Ben:	  M	  11-‐12	  
– Widad:	  T	  2:30-‐3:30	  
– Nara	  and	  Alex	  (TBD)	  
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Textbook	  
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What	  you	  have	  to	  do	  
•  Homework	  (60%)	  

–  Roughly	  8	  weekly	  assignments,	  due	  on	  Wednesday.	  
•  Mostly	  wri_en	  design,	  analysis,	  and	  argument.	  
•  A	  couple	  of	  small	  programming	  assignments.	  

–  Late	  assignments	  not	  accepted	  
–  Turn	  in	  each	  ques-on	  on	  its	  own	  page	  
–  Can	  discuss	  with	  classmates,	  writeups	  must	  be	  your	  own.	  	  Do	  not	  

consult	  other	  textbooks,	  Google,	  etc.	  
–  Extra	  credit	  counted	  separately	  and	  considered	  subjec8vely.	  
–  Extra	  credit	  given	  for	  excep8onal	  solu8ons.	  

•  In-‐class	  midterm,	  Feb.	  8	  (15%)	  
•  Final,	  Mar.	  13	  2:30-‐4:30	  (25%)	  
•  This	  class	  stresses	  problem	  solving	  and	  proofs.	  	  These	  are	  hard.	  	  

We	  will	  curve	  generously.	  
•  Ask	  ques8ons!	  
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Homework	  0	  

•  Complete	  our	  online	  background	  survey	  by	  
this	  Friday,	  January	  6.	  

•  Will	  count	  for	  10	  homework	  points	  (about	  ¼	  
of	  a	  typical	  homework).	  

•  No	  wrong	  answers.	  
•  Available	  on	  website.	  
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What	  the	  course	  is	  about	  
•  Algorithm	  design	  (first	  7	  weeks)	  
– Design	  methods	  (greedy,	  divide	  &	  conquer,	  dynamic	  
programming,	  etc.)	  

– Analysis	  of	  algorithms,	  efficiency	  
–  Correctness	  proofs	  

•  Intractability	  (last	  3	  weeks)	  
–  Important	  to	  know	  when	  problems	  cannot	  be	  solved	  
efficiently.	  

– NP-‐completeness	  theory	  captures	  many	  problems	  
that	  (probably)	  cannot	  be	  solved	  efficiently.	  

•  Schedule	  is	  available	  online	  
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Reading	  

•  KT,	  Chapter	  1	  
•  KT,	  Chapter	  2.1	  –	  2.4	  

9	  
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Chapter 1 
 
Introduction: 
Some Representative 
Problems 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 

1.1  A First Problem:  Stable Matching 

12 

Motivation: a job application process.  

Setting.  College seniors applying for jobs.  Each student has 
preferences on employers.  Each employer has preferences on students. 
 
Goal.  Given a set of preferences, assign students to employers in a 
self-reinforcing way. 
 
Unstable pair:  applicant a and employer e are unstable if: 
  a prefers e to her assigned employer. 
  e prefers a to one of its accepted students. 

Stable assignment.  Assignment with no unstable pairs. 
  Natural and desirable condition. 
  Individual self-interest will prevent any applicant/employer deal 

from being made. 
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An abstraction: the Stable Matching Problem 

Goal.  Given n men and n women, find a "suitable" matching. 
  Participants rate members of opposite sex. 
  Each man lists women in order of preference from best to worst. 
  Each woman lists men in order of preference from best to worst. 

Zeus Amy Clare Bertha 

Yancey Bertha Clare Amy 

Xavier Amy Clare Bertha 

1st 2nd 3rd 

Men’s Preference Profile 

favorite least favorite 

Clare Zeus Xavier Yancey 

Bertha Zeus Xavier Yancey 

Amy Yancey Zeus Xavier 

1st 2nd 3rd 

Women’s Preference Profile 

favorite least favorite 
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An abstraction: the Stable Matching Problem 

Perfect matching:  everyone is matched monogamously.  
  Each man gets exactly one woman. 
  Each woman gets exactly one man. 

 
Stability:  no incentive for some pair of participants to undermine 
assignment by joint action. 
  In matching M, an unmatched pair m-w is unstable if man m and 

woman w prefer each other to current partners. 
  Unstable pair m-w could each improve by eloping. 

Stable matching:  perfect matching with no unstable pairs. 
 
Stable matching problem.  Given the preference lists of n men and n 
women, find a stable matching if one exists. 

Stable Matching Problem 

Q.  Is assignment X-A, Y-B, Z-C stable? 
 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

Stable Matching Problem 

Q.  Is assignment X-A, Y-B, Z-C stable? 
A.  No.  Zeus and Berta will hook up.  (They are an unstable pair.)  
 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 
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Stable Matching Problem 

Q.  Is assignment X-C, Y-A, Z-B stable? 
 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 
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Stable Matching Problem 

Q.  Is assignment X-C, Y-A, Z-B stable? 
A.  Yes.  (No unstable pairs.) 
 
 
 
 
 
 
 
 
 
 
 
 
Q.  Do stable matchings always exist? 
A.  Not obvious. 
 
 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 
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Propose-And-Reject Algorithm 

Propose-and-reject algorithm.  [Gale-Shapley 1962]  Intuitive method 
that guarantees to find a stable matching. 

Initialize each person to be free. 
while (some man is free and hasn't proposed to every woman) { 

    Choose such a man m 
    w = 1st woman on m's list to whom m has not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged, and m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 

20 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 
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Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

X proposes to A. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

A accepts X’s proposal. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

Y proposes to B. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

B accepts Y’s proposal. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 
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Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

Z proposes to A. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

A rejects Z’s proposal.  (She prefers X.) 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

Z proposes to B. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

B accepts Z’s proposal (and breaks engagement with Y). 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 
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Propose-and-Reject Algorithm, Illustrated 

29 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

Y proposes to A. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

A accepts Y’s proposal (and breaks engagement with X). 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 

31 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

X proposes to B. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 

32 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

B rejects X’s proposal.  (She prefers Z.) 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 
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Propose-and-Reject Algorithm, Illustrated 

33 

A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

X proposes to C. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

C accepts X’s proposal. 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

Propose-and-Reject Algorithm, Illustrated 
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A 
Y 
X 
Z X 

A 
B 
C 

B 
Z 
Y 
X Y 

B 
A 
C 

C 
Z 
Y 
X Z 

A 
B 
C 

A stable matching! 

Q.  Does this algorithm always work? 
A.  Yes!  (We need to prove this.) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initialize each person to be free. 
while (some man is free and 
       hasn't proposed to every woman) { 
    Choose such a man m 
    w = 1st woman on m's list to whom m has 
        not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged 
        assign m' to be free 
    else 
        w rejects m 
} 

36 

Proof of Correctness:  Termination 

Observation 1.  Once a woman is matched, she never becomes unmatched; 
she only "trades up." 
 
Observation 2.  Men propose to women in decreasing order of preference. 
 
Claim.  Algorithm terminates after at most n2 iterations of while loop. 
Pf.  Each time through the while loop a man proposes to a new woman. 
There are only n2 possible proposals.  ▪ 
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Proof of Correctness:  Perfection 

 
Claim.  All men and women get matched. 
Pf.  (by contradiction) 
  Suppose, for the sake of contradiction, that there exists someone 

who is not matched. 
  Then since the number of men matched is the same as the number 

of women, there must exist both a man and a woman that are not 
matched.  Call them m and w. 

  By Observation 1 (once a woman is matched, she stays matched), w 
was never proposed to. 

  But, because m is unmatched at the end of the algorithm, the only 
way the while loop could have terminated is if he proposed to 
everyone, including w. 

  This is a contradiction, so we conclude that all men, and hence all 
women, must be matched.▪ 

38 

Proof of Correctness:  Stability 

Claim.  No unstable pairs. 
Pf.  (by contradiction) 
  Suppose m-w is an unstable pair:  each prefers each other to 

partner in Gale-Shapley matching. 

  Case 1:  m never proposed to w. 
  ⇒  m prefers his GS partner to w.  
  ⇒  m-w is stable. 

  Case 2:  m proposed to w. 
  ⇒  w rejected m (right away or later) 
  ⇒  w prefers her GS partner to m. 
  ⇒  m-w is stable. 

  In either case m-w is stable, a contradiction.  ▪ 

Obs. 2: men propose in decreasing 
order of preference 

Obs. 1: women only trade up 

39 

Summary 

Stable matching problem.  Given n men and n women, and their 
preferences, find a stable matching if one exists. 
 
Remember, it’s not even clear if a stable matching always exists! 
 
Gale-Shapley algorithm.  Shows that a stable matching always exists by 
giving an algorithm guaranteed to find one for any problem instance. 
 
That’s pretty cool. 
 

Warm up 

40 

A 
X 
Y 
Z X 

B 
A 
C 

B 
Y 
X 
Z Y 

B 
C 
A 

C 
X 
Y 
Z Z 

B 
A 
C 
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Warm up 
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A 
X 
Y 
Z X 

B 
A 
C 

B 
Y 
X 
Z Y 

B 
C 
A 

C 
X 
Y 
Z Z 

B 
A 
C 

  This is stable even though Z and C hate each other. 
  Why did everyone get the same answer?  (Theorem 1.7 in book). 
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Who cares? Matching Residents to Hospitals 

Before 1952: 
 
“In general, hospitals benefited from filling their positions as early as 
possible, and applicants benefited from delaying acceptance of 
positions. The combination of these factors lead to offers being made 
for positions up to two years in advance. While efforts made to delay 
the start of the application process were somewhat effective, they 
ultimately resulted in very short deadlines for responses by applicants, 
and the opportunities for dissatisfaction on the part of both applicants 
and hospitals remained.”  (Gusfield and Irving 1989, via Wikipedia). 
 
After 1952: 
 
The National Resident Matching Program (NRMP) 

43 

Who cares? Matching Residents to Hospitals 

 
Men ≈ hospitals, Women ≈ med school residents. 

Variant 1.  Some participants declare others as unacceptable. 
 
Variant 2.  Unequal number of men and women. 

Variant 3.  Limited polygamy. 
 

Def.  Matching S unstable if there is a hospital h and resident r such that: 
  h and r are acceptable to each other; and 
  either r is unmatched, or r prefers h to her assigned hospital; and 
  either h does not have all its places filled, or h prefers r to at least one 

of its assigned residents. 
 
A variant of the GS algorithm works, and is used! 

resident A unwilling to 
work in Cleveland 

hospital X wants to hire 3 residents 

44 

Lessons Learned 

Powerful ideas learned in course. 
  Isolate underlying structure of problem. 
  Create useful and efficient algorithms that are provably correct. 
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���
Basics of Algorithm Analysis	


"For me, great algorithms are the poetry of computation. 
Just like verse, they can be terse, allusive, dense, and even 

mysterious. But once unlocked, they cast a brilliant new light 
on some aspect of computing."  -  Francis Sullivan	


(Preliminary) Survey Results	


With 43 respondents,	

•  9% are not at all comfortable with 

asymptotic analysis (Big “Oh” notation)	

•  47% are somewhat comfortable	

•  44% are very comfortable	


	


46	


What does it mean to bound the 
running time of an algorithm?	


Depends on how you measure it.	

Which computer?	

Which programming language?	


Clock time, or something else?	


Even if we fix a model, it still depends on the 
input.	


47	


What does it mean to bound the 
running time of an algorithm?	


Any bound depends on the size of the input, 
e.g. T(n) = 3n^2 + 5n – 2.	

	

But there are many different inputs of the 

same size.	


	

How should one bound apply to all of them?	


48	
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Complexity analysis	


Problem size n	

Best-case complexity:	

	
fastest time on any input of size n	


Average-case complexity:	

	
average time on inputs of size n	


Worst-case complexity:	


	
slowest time on any input of size n	


50	


Pros and cons:	


Best-case	

unrealistic oversell	


Average-case	

over what probability distribution?  (different people may 
have different “average” problems)	

analysis often hard	


Worst-case?	

a fast algorithm has a comforting guarantee	

maybe too pessimistic	


	


51	


Why Worst-Case Analysis?	


Comforting guarantee.	

Appropriate for time-critical applications, e.g. 
avionics.	

Unlike Average-Case, no debate about what the 
right definition is.	

Analysis often easier.	

Result is often representative of "typical" problem 
instances.	

Of course there are exceptions…	


What about the model?	


Let’s say we have bounded the worst-case 
running time on a particular computer as	

	
 	
T(n) = 3n^2 + 5n – 2.	


What about a computer that’s twice as fast?	

What if the compiler changes?	

The running time could change.	

 We need a way to describe running times that 

is independent of this.	

	


52	




1/6/12	  

14	  

53	


That’s where asymptotic analysis 
comes in.	


54	


That’s where asymptotic analysis 
comes in.	


Given two functions f and g: N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≤ c g(n)	


	


f(n) is Ω(g(n)) iff there is a constant c>0 so that 	

	
                      f(n) is eventually always ≥ c g(n) 	


	


f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n)).	


55	

Problem size "

Ti
m

e"

T(n)"

Complexity	


n log2n"

2n log2n"

56	


Working with O-Ω-Θ notation	


Claim:  For any a, and any b>0,  (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b  	
for n ≥ |a|���
	
= 2bnb ���
	
= cnb 	
 	
for c = 2b ���

so (n+a)b is O(nb) ���
	


(n+a)b ≥ (n/2)b 	
for n ≥ 2|a| (even if a <0)                              
	
= 2-bnb ���
	
= c’n 	
 	
for c’ = 2-b ���

so (n+a)b is Ω (nb)	
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57	


€ 

loga b = x means ax = b

aloga b = b

(aloga b )logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)

Working with O-Ω-Θ notation	


Claim:  For any a, b>1   logan is Θ (logbn)	


58	


log grows slower 
than every 
polynomial 

Asymptotic Bounds for Some 
Common Functions	


Polynomials:  ���
	
a0 + a1n + … + adnd  is Θ(nd) if ad > 0���

���
	


Logarithms:  ���
	
For all x > 0,  log n = O(nx)	


59	


every exponential 
grows faster than 
every polynomial 

Asymptotic Bounds for Some 
Common Functions	


	

Exponentials.  ���
For all r > 1 ���
and all d > 0,  ���
nd = O(rn).	


n100	
1.01n	


60	


What’s ok to write?	

2n2 + 5 n is O(n3)	

2n2 + 5 n = O(n3)	


O(n3) = 2n2 + 5 n 	
 	
 	
	

	

Bottom line:	


OK to put big-O in R.H.S. of equality, but not left.  	

[Better, but uncommon, notation:  T(n) ∈ O(f(n)).]	


“One-Way Equalities”	
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Just the right level of precision	


•  It’s not realistic to be more precise than 
up to a constant factor.	


•  On the other hand, order of growth really 
matters…	


61	
 62	


Here’s why���
order of growth matters	


All of these functions have different orders of growth.  That is, for no two 	

functions f and g is it the case that f = Θ(g).	


Now back to the model	


With asymptotic notation, we don’t worry too 
much about the model of computation.	


We just need something reasonable.	

Time ≈ # of instructions executed in a simple 
programming language	


only simple operations (+,*,-,=,if,call,…)	

each operation takes one time step	

each memory access takes one time step	

no fancy stuff (add these two matrices, copy this long string,
…) built in; write it/charge for it as above	


	

63	


64 

Initialize each person to be free. 
while (some man is free and hasn't proposed to every woman) { 

    Choose such a man m 
    w = 1st woman on m's list to whom m has not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged, and m' to be free 
    else 
        w rejects m 
} 

Is this reasonable?	


It’s good pseudo-code, but not clear if every step can be implemented 
in constant time. 
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65	


So what is efficient?	


Polynomial time: running time is O(nd) for some	

constant d independent of the input size n	
 66	


Why Polynomial Time?	


Not a perfect definition:	

	
n100 vs. n1+.02(log n) 	


But it generally works in practice.	

Usually, polynomial is faster than the “brute 
force” solution, so such a solution signifies 
insight.	

Negatable.	



