
1/6/12	

1	

CSE	 417,	 Winter	 2012	
	

Introduc8on,	 Examples,	 and	
Analysis	

Ben	 Birnbaum	
Widad	 Machmouchi	

1	

Slides	 adapted	 from	 Larry	 Ruzzo,	
Steve	 Tanimoto,	 and	 Kevin	 Wayne	 	

CSE	 417:	 Algorithms	 and	
Computa8onal	 Complexity	

•  Instructors:	
– Ben	 Birnbaum	 (Computer	 Science	 Ph.D.)	
–  	 Widad	 Machmouchi	 (Computer	 Science	 Ph.D.)	
–  (Mostly)	 team-‐teaching	 by	 unit	

•  TAs:	
– Nara	 Kim	 (Computer	 Science	 B.S.)	
– Alex	 Piet	 (Applied	 Math	 M.S.)	

2	

3	

cs.wash
ington.

edu/417

Other	 resources	
(all	 linked	 from	 website)	

•  Catalyst	 discussion	 board	 (use	 it!)	
•  Course	 email	 list	
•  Schedule	
•  Office	 hours	
– Ben:	 M	 11-‐12	
– Widad:	 T	 2:30-‐3:30	
– Nara	 and	 Alex	 (TBD)	

4	

1/6/12	

2	

Textbook	

5	

What	 you	 have	 to	 do	
•  Homework	 (60%)	

–  Roughly	 8	 weekly	 assignments,	 due	 on	 Wednesday.	
•  Mostly	 wri_en	 design,	 analysis,	 and	 argument.	
•  A	 couple	 of	 small	 programming	 assignments.	

–  Late	 assignments	 not	 accepted	
–  Turn	 in	 each	 ques-on	 on	 its	 own	 page	
–  Can	 discuss	 with	 classmates,	 writeups	 must	 be	 your	 own.	 	 Do	 not	

consult	 other	 textbooks,	 Google,	 etc.	
–  Extra	 credit	 counted	 separately	 and	 considered	 subjec8vely.	
–  Extra	 credit	 given	 for	 excep8onal	 solu8ons.	

•  In-‐class	 midterm,	 Feb.	 8	 (15%)	
•  Final,	 Mar.	 13	 2:30-‐4:30	 (25%)	
•  This	 class	 stresses	 problem	 solving	 and	 proofs.	 	 These	 are	 hard.	 	

We	 will	 curve	 generously.	
•  Ask	 ques8ons!	

6	

Homework	 0	

•  Complete	 our	 online	 background	 survey	 by	
this	 Friday,	 January	 6.	

•  Will	 count	 for	 10	 homework	 points	 (about	 ¼	
of	 a	 typical	 homework).	

•  No	 wrong	 answers.	
•  Available	 on	 website.	

7	

What	 the	 course	 is	 about	
•  Algorithm	 design	 (first	 7	 weeks)	
– Design	 methods	 (greedy,	 divide	 &	 conquer,	 dynamic	
programming,	 etc.)	

– Analysis	 of	 algorithms,	 efficiency	
–  Correctness	 proofs	

•  Intractability	 (last	 3	 weeks)	
–  Important	 to	 know	 when	 problems	 cannot	 be	 solved	
efficiently.	

– NP-‐completeness	 theory	 captures	 many	 problems	
that	 (probably)	 cannot	 be	 solved	 efficiently.	

•  Schedule	 is	 available	 online	

8	

1/6/12	

3	

Reading	

•  KT,	 Chapter	 1	
•  KT,	 Chapter	 2.1	 –	 2.4	

9	
10

Chapter 1

Introduction:
Some Representative
Problems

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

1.1 A First Problem: Stable Matching

12

Motivation: a job application process.

Setting. College seniors applying for jobs. Each student has
preferences on employers. Each employer has preferences on students.

Goal. Given a set of preferences, assign students to employers in a
self-reinforcing way.

Unstable pair: applicant a and employer e are unstable if:
  a prefers e to her assigned employer.
  e prefers a to one of its accepted students.

Stable assignment. Assignment with no unstable pairs.
  Natural and desirable condition.
  Individual self-interest will prevent any applicant/employer deal

from being made.

1/6/12	

4	

13

An abstraction: the Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.
  Participants rate members of opposite sex.
  Each man lists women in order of preference from best to worst.
  Each woman lists men in order of preference from best to worst.

Zeus Amy Clare Bertha

Yancey Bertha Clare Amy

Xavier Amy Clare Bertha

1st 2nd 3rd

Men’s Preference Profile

favorite least favorite

Clare Zeus Xavier Yancey

Bertha Zeus Xavier Yancey

Amy Yancey Zeus Xavier

1st 2nd 3rd

Women’s Preference Profile

favorite least favorite

14

An abstraction: the Stable Matching Problem

Perfect matching: everyone is matched monogamously.
  Each man gets exactly one woman.
  Each woman gets exactly one man.

Stability: no incentive for some pair of participants to undermine
assignment by joint action.
  In matching M, an unmatched pair m-w is unstable if man m and

woman w prefer each other to current partners.
  Unstable pair m-w could each improve by eloping.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n men and n
women, find a stable matching if one exists.

Stable Matching Problem

Q. Is assignment X-A, Y-B, Z-C stable?

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

Stable Matching Problem

Q. Is assignment X-A, Y-B, Z-C stable?
A. No. Zeus and Berta will hook up. (They are an unstable pair.)

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

1/6/12	

5	

17

Stable Matching Problem

Q. Is assignment X-C, Y-A, Z-B stable?

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

18

Stable Matching Problem

Q. Is assignment X-C, Y-A, Z-B stable?
A. Yes. (No unstable pairs.)

Q. Do stable matchings always exist?
A. Not obvious.

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

19

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method
that guarantees to find a stable matching.

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {

 Choose such a man m
 w = 1st woman on m's list to whom m has not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged, and m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

20

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

1/6/12	

6	

Propose-and-Reject Algorithm, Illustrated

21

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

X proposes to A.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

22

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

A accepts X’s proposal.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

23

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

Y proposes to B.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

24

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

B accepts Y’s proposal.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

1/6/12	

7	

Propose-and-Reject Algorithm, Illustrated

25

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

Z proposes to A.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

26

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

A rejects Z’s proposal. (She prefers X.)

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

27

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

Z proposes to B.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

28

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

B accepts Z’s proposal (and breaks engagement with Y).

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

1/6/12	

8	

Propose-and-Reject Algorithm, Illustrated

29

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

Y proposes to A.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

30

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

A accepts Y’s proposal (and breaks engagement with X).

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

31

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

X proposes to B.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

32

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

B rejects X’s proposal. (She prefers Z.)

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

1/6/12	

9	

Propose-and-Reject Algorithm, Illustrated

33

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

X proposes to C.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

34

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

C accepts X’s proposal.

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

Propose-and-Reject Algorithm, Illustrated

35

A
Y
X
Z X

A
B
C

B
Z
Y
X Y

B
A
C

C
Z
Y
X Z

A
B
C

A stable matching!

Q. Does this algorithm always work?
A. Yes! (We need to prove this.)

Initialize each person to be free.
while (some man is free and
 hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has
 not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged
 assign m' to be free
 else
 w rejects m
}

36

Proof of Correctness: Termination

Observation 1. Once a woman is matched, she never becomes unmatched;
she only "trades up."

Observation 2. Men propose to women in decreasing order of preference.

Claim. Algorithm terminates after at most n2 iterations of while loop.
Pf. Each time through the while loop a man proposes to a new woman.
There are only n2 possible proposals. ▪

1/6/12	

10	

37

Proof of Correctness: Perfection

Claim. All men and women get matched.
Pf. (by contradiction)
  Suppose, for the sake of contradiction, that there exists someone

who is not matched.
  Then since the number of men matched is the same as the number

of women, there must exist both a man and a woman that are not
matched. Call them m and w.

  By Observation 1 (once a woman is matched, she stays matched), w
was never proposed to.

  But, because m is unmatched at the end of the algorithm, the only
way the while loop could have terminated is if he proposed to
everyone, including w.

  This is a contradiction, so we conclude that all men, and hence all
women, must be matched.▪

38

Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)
  Suppose m-w is an unstable pair: each prefers each other to

partner in Gale-Shapley matching.

  Case 1: m never proposed to w.
 ⇒ m prefers his GS partner to w.
 ⇒ m-w is stable.

  Case 2: m proposed to w.
 ⇒ w rejected m (right away or later)
 ⇒ w prefers her GS partner to m.
 ⇒ m-w is stable.

  In either case m-w is stable, a contradiction. ▪

Obs. 2: men propose in decreasing
order of preference

Obs. 1: women only trade up

39

Summary

Stable matching problem. Given n men and n women, and their
preferences, find a stable matching if one exists.

Remember, it’s not even clear if a stable matching always exists!

Gale-Shapley algorithm. Shows that a stable matching always exists by
giving an algorithm guaranteed to find one for any problem instance.

That’s pretty cool.

Warm up

40

A
X
Y
Z X

B
A
C

B
Y
X
Z Y

B
C
A

C
X
Y
Z Z

B
A
C

1/6/12	

11	

Warm up

41

A
X
Y
Z X

B
A
C

B
Y
X
Z Y

B
C
A

C
X
Y
Z Z

B
A
C

  This is stable even though Z and C hate each other.
  Why did everyone get the same answer? (Theorem 1.7 in book).

42

Who cares? Matching Residents to Hospitals

Before 1952:

“In general, hospitals benefited from filling their positions as early as
possible, and applicants benefited from delaying acceptance of
positions. The combination of these factors lead to offers being made
for positions up to two years in advance. While efforts made to delay
the start of the application process were somewhat effective, they
ultimately resulted in very short deadlines for responses by applicants,
and the opportunities for dissatisfaction on the part of both applicants
and hospitals remained.” (Gusfield and Irving 1989, via Wikipedia).

After 1952:

The National Resident Matching Program (NRMP)

43

Who cares? Matching Residents to Hospitals

Men ≈ hospitals, Women ≈ med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

Def. Matching S unstable if there is a hospital h and resident r such that:
  h and r are acceptable to each other; and
  either r is unmatched, or r prefers h to her assigned hospital; and
  either h does not have all its places filled, or h prefers r to at least one

of its assigned residents.

A variant of the GS algorithm works, and is used!

resident A unwilling to
work in Cleveland

hospital X wants to hire 3 residents

44

Lessons Learned

Powerful ideas learned in course.
  Isolate underlying structure of problem.
  Create useful and efficient algorithms that are provably correct.

1/6/12	

12	

45	

���
Basics of Algorithm Analysis	

"For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even

mysterious. But once unlocked, they cast a brilliant new light
on some aspect of computing." - Francis Sullivan	

(Preliminary) Survey Results	

With 43 respondents,	

•  9% are not at all comfortable with

asymptotic analysis (Big “Oh” notation)	

•  47% are somewhat comfortable	

•  44% are very comfortable	

	

46	

What does it mean to bound the
running time of an algorithm?	

Depends on how you measure it.	

Which computer?	

Which programming language?	

Clock time, or something else?	

Even if we fix a model, it still depends on the
input.	

47	

What does it mean to bound the
running time of an algorithm?	

Any bound depends on the size of the input,
e.g. T(n) = 3n^2 + 5n – 2.	

	

But there are many different inputs of the

same size.	

	

How should one bound apply to all of them?	

48	

1/6/12	

13	

49	

Complexity analysis	

Problem size n	

Best-case complexity:	

	
fastest time on any input of size n	

Average-case complexity:	

	
average time on inputs of size n	

Worst-case complexity:	

	
slowest time on any input of size n	

50	

Pros and cons:	

Best-case	

unrealistic oversell	

Average-case	

over what probability distribution? (different people may
have different “average” problems)	

analysis often hard	

Worst-case?	

a fast algorithm has a comforting guarantee	

maybe too pessimistic	

	

51	

Why Worst-Case Analysis?	

Comforting guarantee.	

Appropriate for time-critical applications, e.g.
avionics.	

Unlike Average-Case, no debate about what the
right definition is.	

Analysis often easier.	

Result is often representative of "typical" problem
instances.	

Of course there are exceptions…	

What about the model?	

Let’s say we have bounded the worst-case
running time on a particular computer as	

	
 	
T(n) = 3n^2 + 5n – 2.	

What about a computer that’s twice as fast?	

What if the compiler changes?	

The running time could change.	

 We need a way to describe running times that

is independent of this.	

	

52	

1/6/12	

14	

53	

That’s where asymptotic analysis
comes in.	

54	

That’s where asymptotic analysis
comes in.	

Given two functions f and g: N→R	

f(n) is O(g(n)) iff there is a constant c>0 so that 	

	
 f(n) is eventually always ≤ c g(n)	

	

f(n) is Ω(g(n)) iff there is a constant c>0 so that 	

	
 f(n) is eventually always ≥ c g(n) 	

	

f(n) is Θ(g(n)) iff f(n) is O(g(n)) and f(n) is Ω(g(n)).	

55	

Problem size "

Ti
m

e"

T(n)"

Complexity	

n log2n"

2n log2n"

56	

Working with O-Ω-Θ notation	

Claim: For any a, and any b>0, (n+a)b is Θ(nb)	

(n+a)b ≤ (2n)b 	
for n ≥ |a|���
	
= 2bnb ���
	
= cnb 	
 	
for c = 2b ���

so (n+a)b is O(nb) ���
	

(n+a)b ≥ (n/2)b 	
for n ≥ 2|a| (even if a <0)
	
= 2-bnb ���
	
= c’n 	
 	
for c’ = 2-b ���

so (n+a)b is Ω (nb)	

1/6/12	

15	

57	

€

loga b = x means ax = b

aloga b = b

(aloga b)logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)

Working with O-Ω-Θ notation	

Claim: For any a, b>1 logan is Θ (logbn)	

58	

log grows slower
than every
polynomial

Asymptotic Bounds for Some
Common Functions	

Polynomials: ���
	
a0 + a1n + … + adnd is Θ(nd) if ad > 0���

���
	

Logarithms: ���
	
For all x > 0, log n = O(nx)	

59	

every exponential
grows faster than
every polynomial

Asymptotic Bounds for Some
Common Functions	

	

Exponentials. ���
For all r > 1 ���
and all d > 0, ���
nd = O(rn).	

n100	
1.01n	

60	

What’s ok to write?	

2n2 + 5 n is O(n3)	

2n2 + 5 n = O(n3)	

O(n3) = 2n2 + 5 n 	
 	
 	
	

	

Bottom line:	

OK to put big-O in R.H.S. of equality, but not left. 	

[Better, but uncommon, notation: T(n) ∈ O(f(n)).]	

“One-Way Equalities”	

1/6/12	

16	

Just the right level of precision	

•  It’s not realistic to be more precise than
up to a constant factor.	

•  On the other hand, order of growth really
matters…	

61	
 62	

Here’s why���
order of growth matters	

All of these functions have different orders of growth. That is, for no two 	

functions f and g is it the case that f = Θ(g).	

Now back to the model	

With asymptotic notation, we don’t worry too
much about the model of computation.	

We just need something reasonable.	

Time ≈ # of instructions executed in a simple
programming language	

only simple operations (+,*,-,=,if,call,…)	

each operation takes one time step	

each memory access takes one time step	

no fancy stuff (add these two matrices, copy this long string,
…) built in; write it/charge for it as above	

	

63	

64

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {

 Choose such a man m
 w = 1st woman on m's list to whom m has not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged, and m' to be free
 else
 w rejects m
}

Is this reasonable?	

It’s good pseudo-code, but not clear if every step can be implemented
in constant time.

1/6/12	

17	

65	

So what is efficient?	

Polynomial time: running time is O(nd) for some	

constant d independent of the input size n	
 66	

Why Polynomial Time?	

Not a perfect definition:	

	
n100 vs. n1+.02(log n) 	

But it generally works in practice.	

Usually, polynomial is faster than the “brute
force” solution, so such a solution signifies
insight.	

Negatable.	

