Remember: submit each problem, including extra credit, on its own page.

Problems

1. (10 pts) Recall from class the reduction from 3-SAT to INDEPENDENT-SET. Apply that reduction to the following instance of $3-S A T$:

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{4} \vee x_{2}\right) \wedge\left(x_{3} \vee \overline{x_{1}} \vee \overline{x_{2}}\right)
$$

Namely:
(a) Show the graph produced by the reduction and an integer k, which should correspond to the size of the independent set you are looking for. Show the correspondence between the literals and the nodes of the graph as detailed in the reduction.
(b) Show a satisfying assignment for the formula and use it to construct a solution for the INDEPENDENT-SET instance.
2. (10 pts) Describe the error in the following fallacious "proof" that $P \neq N P$. Consider an algorithm for $S A T$: "On input ϕ, try all possible assignments to the variables. Output YES if any satisfy ϕ." This algorithm clearly requires exponential time. Thus $S A T$ has exponential time complexity. Therefore $S A T$ is not in P. Because $S A T$ is in $N P$, it must be true that P is not equal to $N P$.
3. (15 pts) We know from class that if we have a polynomial time algorithm for a search problem, we get a polynomial time algorithm for the corresponding decision problem. In this problem, you will prove the converse for the decision problem $S A T$: Assume that we have access to a polynomial time algorithm that, given a Boolean formula ϕ, decides whether ϕ is satisfiable or not. Using this algorithm as a black box, give a polynomial time algorithm that produces a satisfying assignment for ϕ if it is satisfiable, or outputs "Not Satisfiable" if ϕ is not.
Hint: Setting a variable x_{i} to TRUE or FALSE in a formula ϕ on n variables reduces ϕ to a new formula ϕ^{\prime} on $n-1$ variables. What can we say about the satisfiability of ϕ^{\prime} in terms of the satisfiability of ϕ ?

Extra Credit

1. (15 pts) Chapter 8, Problem 5.
