CSE 417: Algorithms and Computational Complexity

Winter 2012

Homework 6

Remember: submit each problem, including extra credit, on its own page.
For any problem in which you give a dynamic programming algorithm as a solution, provide the following:

- A description of the subproblems,
- A recurrence that relates the subproblems,
- A short justification that the recurrence is correct,
- Pseudocode showing how to use the recurrence to compute the values of the subproblems efficiently,
- Pseudocode showing how to perform a traceback to find the optimal solution, and
- A short runtime analysis of the algorithm (both the computation of the values and the traceback).

Problems

1. (15 pts) Chapter 6, Exercise 2(b) (page 314). For full credit, your algorithm should have a time complexity of $O(n)$. Note: the book asks for an algorithm returning just the value of the optimal plan. For the homework, we are asking for something different: the actual plan itself.
2. (15 pts) Consider the following problem. The input is a Directed Acyclic Graph (DAG) $G=(V, E)$. Let the vertices V be labeled $v_{1}, v_{2}, \ldots, v_{n}$ such that if the directed edge $\left(v_{i}, v_{j}\right)$ is in E then $i<j$. (Recall from Chapter 3 that $v_{1}, v_{2}, \ldots, v_{n}$ is called a topological ordering, which exists if and only if G is a DAG.) Design a dynamic programming algorithm that outputs the longest path ending at node v_{n}, the last node in the topological order. For full credit, your algorithm should have a time complexity of $O(m+n)$.
3. (10 pts) In the Bin Packing problem, the input is a set of items $\{1,2, \ldots, n\}$, a positive integer weight w_{i} for each item i, a positive integer bin capacity B , and a positive integer k. A YES instance is one in which there is a partition of $\{1,2, \ldots, n\}$ into k subsets $S_{1}, S_{2}, \ldots, S_{k}$ such that the sum of the weights of the items in each set S_{j} is less than or equal to B. (You can think of each set S_{j} as a bin with capacity B; the problem is to determine whether it is possible to pack all n items into k bins without overflow.)

For example, a YES instance to the problem is given by $n=5, B=4, k=3$, and

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)=(2,2,1,3,3),
$$

since in the partition $S_{1}=\{1,2\}, S_{2}=\{3,4\}, S_{3}=\{5\}$, the sum of the weights in each set S_{j} is less than or equal to 4 . However, if we change the weight w_{3} from 1 to 2, the instance becomes a NO instance, since there is no such partition.
Prove that Bin Packing is in NP by describing a verifier for the problem. Make sure you describe what the certificates represent and argue that the verifier runs in polynomial time.

Extra Credit

1. (10 pts) Consider the following problem. The input is a binary tree $T=(V, E)$ with each leaf ℓ labeled by a symbol s_{ℓ} from some fixed set A , as well as a two-dimensional non-negative array of costs indexed by pairs of elements of A such that $c[s, t]$ is the cost of changing symbol s to symbol t and this satisfies $c[s, s]=0$ and $c[s, t]=c[t, s]$ for all s, t in A. Design an algorithm to label each internal node v of the binary tree by a symbol s_{v} from A so as to minimize the sum over all (u, v) in E of $c\left[s_{u}, s_{v}\right]$. This kind of problem arises in computational biology when one wishes to assess a potential evolutionary tree and reconstruct properties of potential ancestral species given this tree. In this case each "symbol" might be a very short sequence - or even just a letterof DNA or protein that might at a given position within a longer sequence, and $c[s, t]$ is the cost of the evolutionary change in going from s to t.
