## CSE 417: Algorithms and Computational Complexity

Winter 2012

## Homework 4

Due Wednesday, 2/15/12

Remember: submit each problem, including extra credit, on its own page.

## Problems

1. (10 pts) (this problem was suggested by Paul Beame) Modify Karatsuba's algorithm based on splitting the polynomials into 3 pieces instead of two. Base your algorithm on a method for multiplying two degree 2 polynomials that uses 6 multiplications. What is the running time of this algorithm? How does the running time of your new algorithm compare to that of Karatsuba's algorithm?
2. (10 pts) Describe an $O(n)$-time algorithm that, given a array $A$ of $n$ distinct numbers and a positive integer $k \leq n$, determines the $k$ numbers that are the closest to the median of $A$. For example, if $A$ is $\{10,2,3,7,9\}$, the median in this case is 7 and if $k=2$, the output is the list $\{9,10\}$. Note that if two numbers are at the same distance from the median, and we can't choose both, either one is fine.
3. (10 pts) Chapter 5, Problem 5.

## Extra Credit

1. (10 pts) Chapter 3, Problem 6. Show how to multiply two degree 2 polynomials using only 5 multiplications. If you use this in a modified version of Karatsuba's algorithm what running time would you get?
