Midterm Friday

closed book, no notes

(no bluebook needed; scratch paper may be handy; calculators unnecessary)

All assigned reading up through 6.1; slides through today; homework.
Chapter 6
Dynamic Programming
6.1 Weighted Interval Scheduling
Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.
Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)
Dynamic Programming: Binary Choice

Notation. \(OPT(j) \) = value of optimal solution to the problem consisting of job requests \(1, 2, \ldots, j \).

- **Case 1**: \(OPT \) selects job \(j \).
 - can't use incompatible jobs \(\{ p(j) + 1, p(j) + 2, \ldots, j - 1 \} \)
 - must include optimal solution to problem consisting of remaining compatible jobs \(1, 2, \ldots, p(j) \)

- **Case 2**: \(OPT \) does not select job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs \(1, 2, \ldots, j-1 \)

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left\{ v_j + OPT(p(j)), \ OPT(j-1) \right\} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force

Brute force recursive algorithm.

Input: n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

Compute-Opt(j) {
 if ($j = 0$)
 return 0
 else
 return max($v_j + $Compute-Opt($p(j)$), Compute-Opt($j-1$))
}

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[p(1) = 0, \ p(j) = j-2 \]
Memoization. Store sub-problem results in a cache; lookup as needed.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

for \(j = 1 \) to \(n \)
 \(M[j] = \text{empty} \) ← global array
\(M[0] = 0 \)

\(\text{M-Compute-Opt}(j) \) {
 if (\(M[j] \) is empty)
 \(M[j] = \max(w_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1)) \)
 return \(M[j] \)
}

Main() {
 ???
}
Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n)$ after sorting by start time.

- $M\text{-Compute-Opt}(j)$: each invocation takes $O(1)$ time and either
 - (i) returns an existing value $M[j]$,
 - (ii) fills in one new entry $M[j]$ and makes two recursive calls

- Progress measure $\Phi = \# \text{nonempty entries of } M[]$.
 - Initially $\Phi = 0$, throughout $\Phi \leq n$.
 - (ii) increases Φ by 1 ⇒ at most $2n$ recursive calls.

- Overall running time of $M\text{-Compute-Opt}(n)$ is $O(n)$.

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: \(n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq ... \leq f_n \).

Compute \(p(1), p(2), ..., p(n) \)

Iterative-Compute-Opt {
 \[
 M[0] = 0 \\
 \text{for } j = 1 \text{ to } n \\
 \quad M[j] = \max(v_j + M[p(j)], M[j-1]) \\
 \]
}

Output \(M[n] \)

Claim: \(M[j] \) is value of optimal solution for jobs \(1..j \)
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)

<table>
<thead>
<tr>
<th></th>
<th>(v_j)</th>
<th>(p_j)</th>
<th>(\text{opt}_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing - “traceback”

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (v_j + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

- # of recursive calls ≤ n ⇒ O(n).
Sidebar: why does job ordering matter?

It’s *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small number of subproblems (O(n)), vs the exponential number that seem to be needed if the jobs aren’t ordered (seemingly, *any* of the 2^n possible subsets might be relevant).

Don’t believe me? Think about the analogous problem for weighted rectangles instead of intervals… (i.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for circles also appears difficult.