Midterm Friday

closed book, no notes
(no bluebook needed; scratch paper may be handy; calculators unnecessary)
All assigned reading up through 6.1; slides through today; homework.

6.1 Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

![Weighted Interval Scheduling Diagram]
Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.
Def. $p(j)$ = largest index $i < j$ such that job i is compatible with j.

Ex: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

Dynamic Programming: Binary Choice

Notation. $OPT(j)$ = value of optimal solution to the problem consisting of job requests $1, 2, \ldots, j$.

- **Case 1:** OPT selects job j.
 - can’t use incompatible jobs { $p(j) + 1, p(j) + 2, \ldots, j - 1$ }
 - must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \ldots, p(j)$

- **Case 2:** OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \ldots, j-1$

Weighted Interval Scheduling: Brute Force

Brute force recursive algorithm.

```
Input: n, s_1, s_2, \ldots, s_n , f_1, f_2, \ldots, f_n , v_1, v_2, \ldots, v_n
Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.
Compute $p(1), p(2), \ldots, p(n)$
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
p(1) = 0, p(j) = j-2
```

Memoization. Store sub-problem results in a cache; lookup as needed.

Input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$

Compute $p(1), p(2), \ldots, p(n)$

```
for j = 1 to n
    M[j] = empty  -- global array
    M[0] = 0
    M-Compute-Opt(j) {
        if (M[j] is empty)
            M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
        return M[j]
    }
Main() {
    ???
}
```

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- **Sort by finish time:** $O(n \log n)$
- **Computing $p()$:** $O(n)$ after sorting by start time.
- **M-Compute-Opt(j):** each invocation takes $O(1)$ time and either
 - (i) returns an existing value $M[j]$
 - (ii) fills in one new entry $M[j]$ and makes two recursive calls
- **Progress measure Φ:** the number of nonempty entries of $M[]$
 - initially $\Phi = 0$,
 - increases by most 2 at each stage
- **Overall running time of M-Compute-Opt(n) is $O(n)$.**

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$

Compute $p(1), p(2), \ldots, p(n)$

```
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(v_j + M[p(j)], M[j-1])
    }
Output M[n]
```

Claim: $M[j]$ is value of optimal solution for jobs 1..j

(A bit subtler skipping details)
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5 \), \(p(7) = 3 \), \(p(2) = 0 \).

<table>
<thead>
<tr>
<th>(j)</th>
<th>(v_j)</th>
<th>(p(j))</th>
<th>(\text{opt}_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sidebar: why does job ordering matter?

It’s *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small number of subproblems (\(O(n) \)), vs the exponential number that seem to be needed if the jobs aren’t ordered (seemingly, any of the \(2^n \) possible subsets might be relevant).

Don’t believe me? Think about the analogous problem for weighted rectangles instead of intervals… (i.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for circles also appears difficult.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?

A. Do some post-processing – “traceback”

```cpp
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (v_j + M[p(j)] > M[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

- # of recursive calls \(\leq n \) \(\Rightarrow \) \(O(n) \).