Dynamic Programming

Outline:

General Principles

Easy Examples – Fibonacci, Licking Stamps

Meatier examples

RNA Structure prediction

Weighted interval scheduling

Maybe others
Some Algorithm Design Techniques, I

General overall idea
Reduce solving a problem to a smaller problem or problems of the same type

Greedy algorithms
Used when one needs to build something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search
Usually fast if they work (but often don't)
Some Algorithm Design Techniques, II

Divide & Conquer

Reduce problem to one or more sub-problems of the same type

Typically, each sub-problem is at most a constant fraction of the size of the original problem

 e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)
Some Algorithm Design Techniques, III

Dynamic Programming

Give a solution of a problem using smaller sub-problems, e.g. a recursive solution

Useful when the same sub-problems show up again and again in the solution
“Dynamic Programming”

Program — A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

Recursive algorithm:

Fibo(n)
 if n=0 then return(0)
 else if n=1 then return(1)
 else return(Fibo(n-1)+Fibo(n-2))
Call tree - start
Full call tree
Memo-ization (Caching)

Save all answers from earlier recursive calls
Before recursive call, test to see if value has already been computed

Dynamic Programming

NOT memoized; instead, convert memoized alg from a recursive one to an iterative one
(top-down \rightarrow bottom-up)
Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i

F[0] ← 0
F[1] ← 1

FiboMemo(n):
 if(F[n] undefined) {
 F[n] ← FiboMemo(n-2)+FiboMemo(n-1)
 }

return(F[n])
Fibonacci - Dynamic Programming Version

FiboDP(n):

F[0] ← 0
F[1] ← 1
for i=2 to n do
 F[i] ← F[i-1]+F[i-2]
end
return(F[n])

For this problem, keeping only last 2 entries instead of full array suffices, but about the same speed
Dynamic Programming

Useful when

Same recursive sub-problems occur *repeatedly*
Parameters of these recursive calls anticipated
The solution to whole problem can be solved
without knowing the *internal* details of how the sub-problems are solved

“principle of optimality”
Making change

Given:

Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:

Give as many as possible of the next biggest denomination
Licking Stamps

Given:

- Large supply of 5¢, 4¢, and 1¢ stamps
- An amount N

Problem: choose fewest stamps totaling N
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

```plaintext
for a = 0, ..., N {
    for b = 0, ..., N {
        for c = 0, ..., N {
            if (5a+4b+c == N && a+b+c is new min)
                {retain (a,b,c);}}}
    output retained triple;
}
```

Time: $O(N^3)$
(Not too hard to see some optimizations, but we’re after bigger fish…)
Theorem: If last stamp in an opt sol has value \(v \), then previous stamps are opt sol for \(N-v \).

Proof: if not, we could improve the solution for \(N \) by using opt for \(N-v \).

Alg: for \(i = 1 \) to \(n \):

\[
M(i) = \min \begin{cases}
0 & i=0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases}
\]

where \(M(i) = \text{min number of stamps totaling } i \$\)
New Idea: Recursion

\[M(i) = \min \begin{cases}
0 & i=0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases} \]

Time: $> 3^{N/5}$
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up:

for \(i = 0, \ldots, N \) do \(M[i] = \min \begin{cases} 0 & i=0 \\ 1+M[i-5] & i\geq5 \\ 1+M[i-4] & i\geq4 \\ 1+M[i-1] & i\geq1 \end{cases} \)

Time: \(O(N) \)
Finding *How Many Stamps*

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|
| M(i)| 0 | 1 | 2 | 3 | 1 | 1 | 2 | 3 | 2 | | | | | |

\[
1 + \text{Min}(3, 1, 3) = 2
\]
Finding Which Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{M}(i) + \text{Min}(3, 1, 3) = 2$
Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

TraceBack(i):
 if i == 0 then return;
 for d in {1, 4, 5} do
 if M[i] == 1 + M[i - d]
 then break;
 print d;
 TraceBack(i - d);

\[
M[i] = \min \begin{cases}
0 & i = 0 \\
1 + M[i-5] & i \geq 5 \\
1 + M[i-4] & i \geq 4 \\
1 + M[i-1] & i \geq 1 \\
\end{cases}
\]
Complexity Note

$O(N)$ is better than $O(N^3)$ or $O(3^{N/5})$

But still *exponential* in input size
(log N bits)

(E.g., miserable if N is 64 bits – $c \cdot 2^{64}$ steps & 2^{64} memory.)

Note: can do in $O(1)$ for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways