CSE417: Review

Larry Ruzzo
Winter 2007

© W.L.Ruzzo & UW CSE 1997-2007

Complexity, I

Asymptotic Analysis
Best/average/worst cases
Upper/Lower Bounds
Big O, Theta, Omega
Analysis methods
 loops
 recurrence relations
 common data structures, subroutines

Graph Algorithms

Graphs
 Representation (edge list/adjacency matrix)
 Breadth/depth first search
 Bipartiteness/2-Colorability
 DAGS and topological ordering

Design Paradigms

Greedy
Dynamic Programming
 recursive solution, redundant subproblems, few
 do all in careful order and tabulate
Divide & Conquer
 recursive solution
 superlinear work
 balanced subproblems
Examples

Greedy
 Interval Scheduling Problems
 Huffman Codes

Examples

Dynamic programming
 Fibonacci
 Making change/Stamps
 Weighted Interval Scheduling
 RNA

Divide & Conquer
 Merge sort
 Closest pair of points
 Integer multiplication (Karatsuba)

Complexity, II

P vs NP
 Big-O and poly vs exponential growth
 Definition of NP - hints and verifiers
 Example problems from slides, reading & hw
 SAT, VertexCover, quadratic Diophantine equations, clique, independent set, TSP, Hamilton cycle, coloring, max cut
 \(P \subseteq NP \subseteq \text{Exp} \)
 Definition of (polynomial time) reduction
 SAT \(\leq_p \) VertexCover example (how, why correct, why \(\leq_p \), implications)
 Definition of NP-completeness
 2x approximation to Euclidean TSP

Some Typical Questions

Give \(O(\cdot) \) bound on \(17n^2(n-3+\log n) \)
Give \(O(\cdot) \) bound on some code \(\{ \text{for } i=1 \text{ to } n \ {\text{for } j \ldots} \} \)
True/False: If \(X \) is \(O(n^3) \), then it’s rarely more than \(n^3 + 14 \) steps.
Give a run time recurrence for a recursive alg, or solve a simple one
Simulate any of the algs we’ve studied
Give an alg for problem \(X \), maybe a variant of one we’ve studied, or prove it’s in NP
Understand parts of correctness proof for an algorithm or reduction
Implications of NP-complete-ness