CSE 417: Algorithms and Computational Complexity

Winter 2007
W. L. Ruzzo
Dynamic Programming, I
Fibonacci & Stamps
Dynamic Programming

Outline:

General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 RNA Structure prediction
 Weighted interval scheduling
 Maybe others
Some Algorithm Design Techniques, I

General overall idea
 Reduce solving a problem to a smaller problem or problems of the same type

Greedy algorithms
 Used when one needs to build something a piece at a time
 Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search
 Usually fast if they work (but often don't)
Some Algorithm Design Techniques, II

Divide & Conquer

Reduce problem to one or more sub-problems of the same type

Typically, each sub-problem is at most a constant fraction of the size of the original problem

 e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)
Some Algorithm Design Techniques, III

Dynamic Programming

Give a solution of a problem using smaller sub-problems, e.g. a recursive solution

Useful when the same sub-problems show up again and again in the solution
“Dynamic Programming”

Program — A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

Recursive algorithm:

```
Fibo(n)
    if n=0 then return(0)
    else if n=1 then return(1)
    else return(Fibo(n-1)+Fibo(n-2))
```
Full call tree
Memo-ization (Caching)

Remember all values from previous recursive calls
Before recursive call, test to see if value has already been computed

Dynamic Programming
\(NOT \) memoized; instead, convert memoized alg from a recursive one to an iterative one (top-down \(\rightarrow \) bottom-up)
Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i
F[0] ← 0
F[1] ← 1

FiboMemo(n):
 if(F[n] undefined) {
 F[n] ← FiboMemo(n-2)+FiboMemo(n-1)
 }
return(F[n])
Fibonacci - Dynamic Programming Version

FiboDP(n):
 F[0] ← 0
 F[1] ← 1
 for i=2 to n do
 F[i] ← F[i-1]+F[i-2]
 endfor
 return(F[n])

For this problem, keeping only last 2 entries instead of full array suffices, but about the same speed.
Dynamic Programming

Useful when

Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated
The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved

“principle of optimality”
Making change

Given:

Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:

Give as many as possible of the next biggest denomination
Licking Stamps

Given:

- Large supply of 5¢, 4¢, and 1¢ stamps
- An amount N

Problem: choose fewest stamps totaling N
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

for a = 0, …, N {
 for b = 0, …, N {
 for c = 0, …, N {
 if (5a+4b+c == N && a+b+c is new min)
 {retain (a,b,c);}}}
 output retained triple;
}

Time: $O(N^3)$

(Not too hard to see some optimizations, but we’re after bigger fish…)}
Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for $N-v$.

Proof: if not, we could improve the solution for N by using opt for $N-v$.

$$M(i) = \min \begin{cases} 0 & i=0 \\ 1+M(i-5) & i \geq 5 \\ 1+M(i-4) & i \geq 4 \\ 1+M(i-1) & i \geq 1 \end{cases}$$

where $M(i) = \min$ number of stamps totaling $i \notin$
New Idea: Recursion

\[M(i) = \min \begin{cases}
0 & i = 0 \\
1 + M(i - 5) & i \geq 5 \\
1 + M(i - 4) & i \geq 4 \\
1 + M(i - 1) & i \geq 1
\end{cases} \]

Time: \(> 3^{\frac{N}{5}} \)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up:

\[
\text{for } i = 0, \ldots, N \text{ do } M[i] = \min \begin{cases}
0 & i = 0 \\
1 + M[i-5] & i \geq 5 \\
1 + M[i-4] & i \geq 4 \\
1 + M[i-1] & i \geq 1
\end{cases};
\]

Time: \(O(N)\)
Finding How Many Stamps

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[1 + \text{Min}(3, 1, 3) = 2\]
Finding Which Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Min}(3, 1, 3) = 1 \]

\[1 + \text{Min}(3, 1, 3) = 2 \]
Trace-Back

Way 1: tabulate all

add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

\[\text{TraceBack}(i): \]
\[
\begin{align*}
\text{if } i &\text{ == 0 then return;} \\
\text{for } d \text{ in } \{1, 4, 5\} \text{ do} \\
&\quad \text{if } M[i] \text{ == 1 + } M[i - d] \text{ then break;} \\
&\quad \text{print } d; \\
&\quad \text{TraceBack}(i - d);
\end{align*}
\]
Complexity Note

$O(N)$ is better than $O(N^3)$ or $O(3^{N/5})$

But still *exponential* in input size
(log N bits)

(E.g., miserable if N is 64 bits – $c \cdot 2^{64}$ steps & 2^{64} memory.)

Note: can do in $O(1)$ for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways