CSE 417: Algorithms and Computational Complexity

Winter 2007
W. L. Ruzzo
Dynamic Programming, I
Fibonacci & Stamps

Dynamic Programming

Outline:
General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 RNA Structure prediction
 Weighted interval scheduling
 Maybe others

Some Algorithm Design Techniques, I

General overall idea
Reduce solving a problem to a smaller problem or problems of the same type

Greedy algorithms
Used when one needs to build something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search
Usually fast if they work (but often don’t)

Some Algorithm Design Techniques, II

Divide & Conquer
Reduce problem to one or more sub-problems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
 e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)
Some Algorithm Design Techniques, III

Dynamic Programming
- Give a solution of a problem using smaller sub-problems, e.g., a recursive solution
- Useful when the same sub-problems show up again and again in the solution

“Dynamic Programming”

Program — A plan or procedure for dealing with some matter

— Webster’s New World Dictionary

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - “It’s impossible to use dynamic in a pejorative sense”
 - “something not even a Congressman could object to”

A very simple case: Computing Fibonacci Numbers

Recall \(F_n = F_{n-1} + F_{n-2} \) and \(F_0 = 0, F_1 = 1 \)

Recursive algorithm:

\[
\text{Fibo}(n) \\
\text{if } n=0 \text{ then return(0)} \\
\text{else if } n=1 \text{ then return(1)} \\
\text{else return(Fibo}(n-1)+\text{Fibo}(n-2))
\]
Memo-ization (Caching)

Remember all values from previous recursive calls
Before recursive call, test to see if value has already been computed

Dynamic Programming
NOT memoized; instead, convert memoized alg from a recursive one to an iterative one (top-down → bottom-up)

Fibonacci - Memoized Version
initialize: F[i] ← undefined for all i
F[0] ← 0
F[1] ← 1
FiboMemo(n):
if(F[n] undefined) {
 F[n] ← FiboMemo(n-2)+FiboMemo(n-1)
}
return(F[n])
Fibonacci - Dynamic Programming Version

FiboDP(n):
F[0] ← 0
F[1] ← 1
for i=2 to n do
 F[i] ← F[i-1]+F[i-2]
endfor
return(F[n])

For this problem, keeping only last 2 entries instead of full array suffices, but about the same speed

Dynamic Programming

Useful when
Same recursive sub-problems occur repeatedly
Parameters of these recursive calls anticipated
The solution to whole problem can be solved without knowing the internal details of how the sub-problems are solved
"principle of optimality"

Making change

Given:
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N
Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
Give as many as possible of the next biggest denomination

Licking Stamps

Given:
Large supply of 5¢, 4¢, and 1¢ stamps
An amount N
Problem: choose fewest stamps totaling N
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations

A Simple Algorithm

At most N stamps needed, etc.

```plaintext
for a = 0, ..., N {
  for b = 0, ..., N {
    for c = 0, ..., N {
      if (5a+4b+c == N && a+b+c is new min)
        retain (a,b,c);}}}
output retained triple;
```

Time: \(O(N^3)\)

(Not too hard to see some optimizations, but we’re after bigger fish…)

Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for N-v.

Proof: if not, we could improve the solution for N by using opt for N-v.

```plaintext
M(i) = min \{0, 1+M(i-5), 1+M(i-4), 1+M(i-1)\}
```

where \(M(i) = \text{min number of stamps totaling } i\)¢

New Idea: Recursion

```
M(i) = \{0, 1+M(i-5), 1+M(i-4), 1+M(i-1)\}
```

Time: > \(3^{N/5}\)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up:

\[
\text{for } i = 0, \ldots, N \text{ do } M[i] = \min \begin{cases}
0 & i = 0 \\
1 + M[i-5] & i \geq 5 \\
1 + M[i-4] & i \geq 4 \\
1 + M[i-1] & i \geq 1
\end{cases}
\]

Time: O(N)

Finding How Many Stamps

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + Min(3, 1, 3) = 2

Finding Which Stamps: Trace-Back

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + Min(3, 1, 3) = 2

Trace-Back

Way 1: tabulate all
add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

\[
\text{TraceBack}(i): \\
\text{if } i = 0 \text{ then return;} \\
\text{for } d \text{ in } (1, 4, 5) \text{ do} \\
\quad \text{if } M[i] = 1 + M[i - d] \text{ then break;} \\
\quad \text{print } d; \\
\quad \text{TraceBack}(i - d);
\]

Complexity Note

O(N) is better than O(N^3) or O(3^{N/5})

But still exponential in input size
(log N bits)

(E.g., miserable if N is 64 bits – c \cdot 2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later.

Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways