CSE 417: Algorithms and Computational Complexity

Winter 2007
Larry Ruzzo

Divide and Conquer Algorithms
The Divide and Conquer Paradigm

Outline:

General Idea

Review of Merge Sort

Why does it work?
 Importance of balance
 Importance of super-linear growth

Two interesting applications
 Polynomial Multiplication
 Matrix Multiplication

Finding & Solving Recurrences
Algorithm Design Techniques

Divide & Conquer

Reduce problem to one or more sub-problems of the same type

Typically, each sub-problem is at most a constant fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)
Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

\[T(n) = 2T(n/2) + cn, \ n \geq 2 \]

\[T(1) = 0 \]

Solution: \(O(n \log n) \) (details later)
Why Balanced Subdivision?

Alternative "divide & conquer" algorithm:
Sort n-1
Sort last 1
Merge them

\[T(n) = T(n-1) + T(1) + 3n \quad \text{for } n \geq 2 \]
\[T(1) = 0 \]
Solution: \(3n + 3(n-1) + 3(n-2) \ldots = \Theta(n^2) \)
Another D&C Approach

Suppose we've already invented DumbSort, taking time n^2

Try *Just One Level* of divide & conquer:
- DumbSort(first $n/2$ elements)
- DumbSort(last $n/2$ elements)

Merge results

Time: $2 \left(\frac{n}{2}\right)^2 + n = \frac{n^2}{2} + n \ll n^2$

Almost twice as fast!
Another D&C Approach, cont.

Moral 1: “two halves are better than a whole”
Two problems of half size are **better** than one full-size problem, even given the $O(n)$ overhead of recombining, since the base algorithm has *super-linear* complexity.

Moral 2: “If a little's good, then more's better”
two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").
Another D&C Approach, cont.

Moral 3: unbalanced division less good:

$$(.1n)^2 + (.9n)^2 + n = .82n^2 + n$$

The 18% savings compounds significantly if you carry recursion to more levels, actually giving $O(n \log n)$, but with a bigger constant. So worth doing if you can’t get 50-50 split, but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.

$$(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n$$

Little improvement here.
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with \(\Theta(n^2) \) comparisons.

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n/4$ points in each piece.
Closest Pair of Points

Algorithm.

- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Closest Pair of Points

Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. \rightarrow seems like $O(n^2)$
- Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.

![Diagram showing close pair of points with one point in each side]
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < \(\delta \).

- Observation: only need to consider points within \(\delta \) of line \(L \).
- Sort points in \(2\delta \)-strip by their \(y \) coordinate.

\(\delta = \min(12, 21) \)
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

$\delta = \min(12, 21)$
Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 8$, then the distance between s_i and s_j is at least δ.

Pf.

- No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.
- only 8 boxes
Closest Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {
 if(n <= ??) return ??

 Compute separation line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 Delete all points further than δ from separation line L

 Sort remaining points p[1]...p[m] by y-coordinate.

 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + δ
 δ = min(δ, distance between p[i] and p[i+k]);
 k++;

 return δ.
 }
Going From Code to Recurrence

Carefully define what you’re counting, and write it down!

“Let \(C(n) \) be the number of comparisons between sort keys used by MergeSort when sorting a list of length \(n \geq 1 \)”

In code, clearly separate **base case** from **recursive case**, highlight **recursive calls**, and **operations being counted**.

Write Recurrence(s)
Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 if(n <= 1) return \infty

 Compute separation line L such that half the points are on one side and half on the other side.

 \delta_1 = \text{Closest-Pair(left half)}
 \delta_2 = \text{Closest-Pair(right half)}
 \delta = \min(\delta_1, \delta_2)

 Delete all points further than \delta from separation line L

 Sort remaining points p[1]...p[m] by y-coordinate.

 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + \delta
 \delta = \min(\delta, \text{distance between } p[i] \text{ and } p[i+k])
 k++;

 return \delta.
}
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq \begin{cases}
0 & n = 1 \\
2T(n/2) + 7n & n > 1
\end{cases} \implies T(n) = O(n \log n) \]

BUT - that’s only the number of distance calculations
Closest Pair Algorithm

```plaintext
Closest-Pair(p₁, ..., pₙ) {
    if(n <= 1) return ∞

    Compute separation line L such that half the points are on one side and half on the other side.

    δ₁ = Closest-Pair(left half)
    δ₂ = Closest-Pair(right half)
    δ = min(δ₁, δ₂)

    Delete all points further than δ from separation line L

    Sort remaining points p[1]...p[m]

    for i = 1..m
        k = 1
        while i+k <= m && p[i+k].y < p[i].y + δ
            δ = min(δ, distance between p[i] and p[i+k]);
            k++;

    return δ.
}
```

Base Case

Recursive calls (2)

Basic operations: comparisons

0

O(n log n)

2T(n / 2)

1

O(n)

O(n log n)

O(n)

Basic operations at this recursive level
Closest Pair of Points: Analysis

Running time.

\[T(n) \leq \begin{cases}
0 & n = 1 \\
2T(n/2) + O(n \log n) & n > 1
\end{cases} \Rightarrow T(n) = O(n \log^2 n) \]

Q. Can we achieve \(O(n \log n) \)?

A. Yes. Don’t sort points from scratch each time.
 - Sort by \(x \) at top level only.
 - Each recursive call returns \(\delta \) and list of all points sorted by \(y \)
 - Sort by \textit{merging} two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]
5.5 Integer Multiplication
Integer Arithmetic

Add. Given two n-digit integers a and b, compute $a + b$.
- $O(n)$ bit operations.

Multiply. Given two n-digit integers a and b, compute $a \times b$.
- Brute force solution: $\Theta(n^2)$ bit operations.

Add

```
1 1 1 1 1 1 1 0 1
  1 1 0 1 0 1 0 1
+ 0 1 1 1 1 1 0 1
  1 0 1 0 1 0 0 1 0
```

Multiply

```
  1 1 0 1 0 1 0 1
* 0 1 1 1 1 1 0 1
  1 1 0 1 0 1 0 1
  0 0 0 0 0 0 0 0 0
  1 1 0 1 0 1 0 1 0
  1 1 0 1 0 1 0 1 0
  1 1 0 1 0 1 0 1 0
  0 0 0 0 0 0 0 0 0
  0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
```
Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:
- Multiply four \(\frac{1}{2}n \)-digit integers.
- Add two \(\frac{1}{2}n \)-digit integers, and shift to obtain result.

\[
\begin{align*}
x &= 2^{n/2} \cdot x_1 + x_0 \\
y &= 2^{n/2} \cdot y_1 + y_0 \\
xy &= \left(2^{n/2} \cdot x_1 + x_0\right)\left(2^{n/2} \cdot y_1 + y_0\right) \\
&= 2^n \cdot x_1y_1 + 2^{n/2} \cdot \left(x_1y_0 + x_0y_1\right) + x_0y_0
\end{align*}
\]

\[
T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)
\]

assumes \(n \) is a power of 2
Key trick: 2 multiplies for the price of 1:

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)
\]
\[
= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0
\]

Well, ok, 4 for 3 is more accurate…

\[
\alpha = x_1 + x_0
\]
\[
\beta = y_1 + y_0
\]
\[
\alpha \beta = (x_1 + x_0)(y_1 + y_0)
\]
\[
= x_1 y_1 + (x_1 y_0 + x_0 y_1) + x_0 y_0
\]
\[
(x_1 y_0 + x_0 y_1) = \alpha \beta - x_1 y_1 - x_0 y_0
\]
Karatsuba Multiplication

To multiply two \(n \)-digit integers:

- Add two \(\frac{1}{2}n \) digit integers.
- Multiply three \(\frac{1}{2}n \)-digit integers.
- Add, subtract, and shift \(\frac{1}{2}n \)-digit integers to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
y = 2^{n/2} \cdot y_1 + y_0
xy = 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_1y_0 + x_0y_1) + x_0y_0
\]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two \(n \)-digit integers in \(O(n^{1.585}) \) bit operations.

\[
T(n) \leq T\left(\left\lfloor n/2 \right\rfloor\right) + T\left(\left\lfloor n/2 \right\rfloor\right) + T\left(1 + \left\lfloor n/2 \right\rfloor\right) + \Theta(n)
\]

Sloppy version: \(T(n) \leq 3T(n/2) + O(n) \)

\[\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})\]
Multiplication – The Bottom Line

Naïve: $\Theta(n^2)$

Karatsuba: $\Theta(n^{1.59...})$

Amusing exercise: generalize Karatsuba to do 5 size $n/3$ subproblems $=>$ $\Theta(n^{1.46...})$

Best known: $\Theta(n \log n \loglog n)$

"Fast Fourier Transform"

but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)

High precision arithmetic IS important for crypto
Recurrences

Where they come from, how to find them (above)

Next: how to solve them
Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

\[T(n) = 2T(n/2) + cn, \quad n \geq 2 \]

\[T(1) = 0 \]

Solution: \(\Theta(n \log n) \)

(details later)

Log n levels

O(n) work per level

now
Merge Sort

MS(A: array[1..n]) returns array[1..n] {
 if(n=1) return A[1];
 New U: array[1:n/2] = MS(A[1..n/2]);
 New L: array[1:n/2] = MS(A[n/2+1..n]);
 Return(Merge(U,L));
}

Merge(U,L: array[1..n]) {
 New C: array[1..2n];
 a=1; b=1;
 For i = 1 to 2n
 C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
 Return C;
}
Going From Code to Recurrence

Carefully define what you’re counting, and write it down!

“Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length \(n \geq 1 \)”

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)
Merge Sort

\[\text{MS}(A: \text{array}[1..n]) \text{ returns } \text{array}[1..n] \{ \]
\[\text{If}(n=1) \text{ return } A[1]; \]
\[\text{New } L: \text{array}[1:n/2] = \text{MS}(A[1..n/2]); \]
\[\text{New } R: \text{array}[1:n/2] = \text{MS}(A[n/2+1..n]); \]
\[\text{Return}(\text{Merge}(L,R)); \}
\]

\[\text{Merge}(A,B: \text{array}[1..n]) \{ \]
\[\text{New } C: \text{array}[1..2n]; \]
\[a=1; b=1; \]
\[\text{For } i = 1 \text{ to } 2n \{ \]
\[\quad C[i] = \text{“smaller of } A[a], B[b] \text{ and } a++ \text{ or } b++”; \]
\[\text{Return } C; \}
\]
The Recurrence

\[C(n) = \begin{cases}
0 & \text{if } n = 1 \\
2C\left(\frac{n}{2}\right) + (n - 1) & \text{if } n > 1
\end{cases} \]

Base case

Recursive calls

Total time: proportional to \(C(n) \)
(loops, copying data, parameter passing, etc.)

One compare per element added to merged list, except the last.
Solve: $T(1) = c$

$T(n) = 2 \cdot T(n/2) + cn$

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1=2^0$</td>
<td>n</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>$2=2^1$</td>
<td>n/2</td>
<td>$2 \cdot c \cdot n/2$</td>
</tr>
<tr>
<td>2</td>
<td>$4=2^2$</td>
<td>n/4</td>
<td>$4 \cdot c \cdot n/4$</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>n/2^i</td>
<td>$2^i \cdot c \cdot n/2^i$</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>k-1</td>
<td>2^{k-1}</td>
<td>n/2^{k-1}</td>
<td>$2^{k-1} \cdot c \cdot n/2^{k-1}$</td>
</tr>
<tr>
<td>k</td>
<td>2^k</td>
<td>n/2^k=1</td>
<td>$2^k \cdot T(1)$</td>
</tr>
</tbody>
</table>

Total work: add last col
Solve: $T(1) = c$

$$T(n) = 4 \cdot T(n/2) + cn$$

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4^0</td>
<td>n</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>4^1</td>
<td>$n/2$</td>
<td>$4 \cdot c \cdot n/2$</td>
</tr>
<tr>
<td>2</td>
<td>4^2</td>
<td>$n/4$</td>
<td>$16 \cdot c \cdot n/4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>4^i</td>
<td>$n/2^i$</td>
<td>$4^i \cdot c \cdot n/2^i$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k-1</td>
<td>4^{k-1}</td>
<td>$n/2^{k-1}$</td>
<td>$4^{k-1} \cdot c \cdot n/2^{k-1}$</td>
</tr>
<tr>
<td>k</td>
<td>4^k</td>
<td>$n/2^k=1$</td>
<td>$4^k \cdot T(1)$</td>
</tr>
</tbody>
</table>

$$\sum_{i=0}^{k} 4^i \cdot cn / 2^i = O(n^2)$$
Solve: \(T(1) = c \)
\(T(n) = 3 \ T(n/2) + cn \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1(=3^0)</td>
<td>n</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>3(=3^1)</td>
<td>n/2</td>
<td>3 \ c \ n/2</td>
</tr>
<tr>
<td>2</td>
<td>9(=3^2)</td>
<td>n/4</td>
<td>9 \ c \ n/4</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>i</td>
<td>(3^i)</td>
<td>n/2^i</td>
<td>3^i \ c \ n/2^i</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>k-1</td>
<td>(3^{k-1})</td>
<td>n/2^{k-1}</td>
<td>3^{k-1} \ c \ n/2^{k-1}</td>
</tr>
<tr>
<td>k</td>
<td>(3^k)</td>
<td>n/2^k=1</td>
<td>(3^k \ T(1))</td>
</tr>
</tbody>
</table>

\(n = 2^k \); \(k = \log_2 n \)

Total Work: \(T(n) = \sum_{i=0}^{k} 3^i \ c \ n / 2^i \)
Solve: \(T(1) = c \)
\(T(n) = 3 \ T(n/2) + cn \)
(cont.)

\[
T(n) = \sum_{i=0}^{k} 3^i \frac{cn}{2^i}
\]

\[
= cn \sum_{i=0}^{k} \frac{3^i}{2^i}
\]

\[
= cn \sum_{i=0}^{k} \left(\frac{3}{2}\right)^i
\]

\[
= cn \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\left(\frac{3}{2}\right) - 1}
\]

\[
\sum_{i=0}^{k} x^i = \frac{x^{k+1} - 1}{x - 1} \quad (x \neq 1)
\]
Solve: \(T(1) = c \)
\(T(n) = 3 \ T(n/2) + cn \) \(\text{(cont.)} \)

\[
= 2cn \left(\left(\frac{3}{2} \right)^{k+1} - 1 \right) \\
< 2cn \left(\frac{3}{2} \right)^{k+1} \\
= 3cn \left(\frac{3}{2} \right)^k \\
= 3cn \frac{3^k}{2^k}
\]
Solve: \(T(1) = c \)
\(T(n) = 3 \, T(n/2) + cn \) (cont.)

\[
\begin{align*}
a^{\log_b n} &= \left(b^{\log_b a} \right)^{\log_b n} \\
&= \left(b^{\log_b n} \right)^{\log_b a} \\
&= n^{\log_b a}
\end{align*}
\]
Master Divide and Conquer Recurrence

If \(T(n) = aT(n/b) + cn^k \) for \(n > b \) then

- if \(a > b^k \) then \(T(n) \) is \(\Theta(n^{\log_b a}) \) [many subproblems => leaves dominate]
- if \(a < b^k \) then \(T(n) \) is \(\Theta(n^k) \) [few subproblems => top level dominates]
- if \(a = b^k \) then \(T(n) \) is \(\Theta(n^k \log n) \) [balanced => all log n levels contribute]

True even if it is \([n/b]\) instead of \(n/b\).
Another D&C Approach, cont.

Moral 3: unbalanced division less good:

\[(.1n)^2 + (.9n)^2 + n = .82n^2 + n\]

The 18% savings compounds significantly if you carry recursion to more levels, actually giving $O(n\log n)$, but with a bigger constant. So worth doing if you can’t get 50-50 split, but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.

In contrast:

\[(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n\]

Little improvement here.
D & C Summary

“two halves are better than a whole”
if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
repeat above, recursively

Analysis: recursion tree or Master Recurrence