Meg Ryan was in "French Kiss" with Kevin Kline.

Meg Ryan was in "Sleepless in Seattle" with Tom Hanks.

Kevin Bacon was in "Apollo 13" with Tom Hanks.
Objects & Relationships

The Kevin Bacon Game:
 Actors
 Two are related if they’ve been in a movie together

Exam Scheduling:
 Classes
 Two are related if they have students in common

Traveling Salesperson Problem:
 Cities
 Two are related if can travel \textit{directly} between them
Graphs

An extremely important formalism for representing (binary) relationships
Objects: “vertices”, aka “nodes”
Relationships between pairs: “edges”, aka “arcs”
Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges
Undirected Graph $G = (V,E)$
Undirected Graph $G = (V, E)$
Undirected Graph \(G = (V,E) \)
Undirected Graph $G = (V, E)$
Undirected Graph $G = (V,E)$
Graphs don’t live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.
Directed Graph $G = (V, E)$
Directed Graph $G = (V,E)$
Directed Graph $G = (V,E)$
Directed Graph $G = (V,E)$
Directed Graph $G = (V, E)$
Specifying undirected graphs as input

What are the vertices?
Explicitly list them:
{“A”, “7”, “3”, “4”}

What are the edges?
Either, set of edges
{[A,3], {7,4}, {4,3}, {4,A}}
Or, (symmetric) adjacency matrix:

\[
\begin{array}{cccc}
A & 7 & 3 & 4 \\
\hline
A & 0 & 0 & 1 & 1 \\
7 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 1 \\
4 & 1 & 1 & 1 & 0 \\
\end{array}
\]
Specifying directed graphs as input

What are the vertices?
Explicitly list them:
{“A”, “7”, “3”, “4”}

What are the edges?
Either, set of directed edges:
{(A,4), (4,7), (4,3), (4,A), (A,3)}
Or, (nonsymmetric) adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>7</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Vertices vs # Edges

Let G be an undirected graph with n vertices and m edges. How are n and m related?

Since

- every edge connects two different vertices (no loops),
- and no two edges connect the same two vertices (no multi-edges),

it must be true that:

$$0 \leq m \leq \frac{n(n-1)}{2} = O(n^2)$$
More Cool Graph Lingo

A graph is called *sparse* if $m << n^2$, otherwise it is *dense*

Boundary is somewhat fuzzy; $O(n)$ edges is certainly sparse, $\Omega(n^2)$ edges is dense.

Sparse graphs are common in practice

E.g., all planar graphs are sparse ($m \leq 3n-6$, for $n \geq 3$)

Q: which is a better run time, $O(n+m)$ or $O(n^2)$?

A: $O(n+m) = O(n^2)$, but $n+m$ usually way better!
Representing Graph $G = (V, E)$

Vertex set $V = \{v_1, \ldots, v_n\}$

Adjacency Matrix A

$A[i,j] = 1$ iff $(v_i, v_j) \in E$

Space is n^2 bits

Advantages:

$O(1)$ test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in storage and access
Representing Graph $G=(V,E)$

n vertices, m edges

Adjacency List:
$O(n+m)$ words

Advantages:
Compact for sparse graphs
Easily see all edges

Disadvantages
More complex data structure
no $O(1)$ edge test
Representing Graph $G=(V,E)$

- **n vertices, m edges**

Adjacency List:

$O(n+m)$ words

- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, *if needed*, (don’t bother if not)
Graph Traversal

Learn the basic structure of a graph
“Walk,” *via edges*, from a fixed starting vertex
s to all vertices reachable from s

Being *orderly* helps. Two common ways:

- Breadth-First Search
- Depth-First Search
Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue
Breadth-First Search

Idea: Explore from s in all possible directions, layer by layer.

BFS algorithm.
\[L_0 = \{ s \}. \]
\[L_1 = \text{all neighbors of } L_0. \]
\[L_2 = \text{all nodes not in } L_0 \text{ or } L_1, \text{ and having an edge to a node in } L_1. \]
\[L_{i+1} = \text{all nodes not in earlier layers, and having an edge to a node in } L_i. \]

Theorem. For each i, \(L_i \) consists of all nodes at distance (i.e., min path length) exactly i from s.

Cor: There is a path from s to t iff t appears in some layer.
Graph Traversal: Implementation

Learn the basic structure of a graph
“Walk,” via edges, from a fixed starting vertex \(s \) to all vertices reachable from \(s \)

Three states of vertices
undiscovered
discovered
fully-explored
BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)

mark s "discovered"

queue = { s }

while queue not empty

u = remove_first(queue)

for each edge {u,x}

if (x is undiscovered)
 mark x discovered
 append x on queue

mark u fully explored

Exercise: modify code to number vertices & compute level numbers
BFS(v)

Queue: 3 4
BFS(v)

Queue: 4 5 6 7
BFS(v)

BFS (Breadth-First Search) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a ‘search tree’ or ‘exploration tree’) and explores the neighbor nodes at the present depth prior to moving on to nodes at the next depth level.

Queue: 5 6 7 8 9
BFS(v)

Queue: 8 9 10 11
BFS(v)

Queue: 10 11 12 13
BFS(v)

Queue:

1 2 3 4 5 9 12 8 13 6 7 11
BFS(s) Implementation

Global initialization: mark all vertices "undiscovered"

BFS(s)
 mark s "discovered"
 queue = { s }
 while queue not empty
 u = remove_first(queue)
 for each edge {u,x}
 if (x is undiscovered)
 mark x discovered
 append x on queue
 mark u fully explored

Exercise: modify code to number vertices & compute level numbers
BFS analysis

Each edge is explored once from each end-point

Each vertex is discovered by following a different edge

Total cost $O(m)$, $m = \# \text{ of edges}$

Exercise: extend algorithm and analysis to non-connected graphs
Properties of (Undirected) BFS(v)

BFS(v) visits x if and only if there is a path in G from v to x.

Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G.

Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.

All non-tree edges join vertices on the same or adjacent levels.

not true of every spanning tree!
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start. All edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start all edges connect same/adjacent levels.
Tree (solid edges) gives shortest paths from start vertex.

BFS Application: Shortest Paths

Can label by distances from start, all edges connect same/adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

can label by distances from start all edges connect same/adjacent levels
Why fuss about trees?

Trees are simpler than graphs
Ditto for algorithms on trees vs algs on graphs
So, this is often a good way to approach a graph problem: find a “nice” tree in the graph, i.e., one such that non-tree edges have some simplifying structure
E.g., BFS finds a tree s.t. level-jumps are minimized
DFS (next) finds a different tree, but it also has interesting structure…
Graph Search Application: Connected Components

Want to answer questions of the form:

given vertices u and v, is there a path from u to v?

Idea: create array A such that

\[A[u] = \text{smallest numbered vertex that is connected to } u. \] Question reduces to whether $A[u]=A[v]$?

Q: Why not create 2-d array $\text{Path}[u,v]$?
Graph Search Application: Connected Components

initial state: all v undiscovered
for v = 1 to n do
 if state(v) != fully-explored then
 BFS(v): setting A[u] ← v for each u found (and marking u discovered/fully-explored)
 endif
endfor

Total cost: $O(n+m)$
 each edge is touched a constant number of times (twice)
 works also with DFS
3.4 Testing Bipartiteness
Bipartite Graphs

Def. An undirected graph $G = (V, E)$ is **bipartite** if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

- Stable marriage: men = red, women = blue
- Scheduling: machines = red, jobs = blue

“bi-partite” means “two parts.” An equivalent definition: G is bipartitite if you can partition the node set into 2 parts (say, blue/red or left/right) so that all edges join nodes in different parts/no edge has both ends in the same part.

![A bipartite graph](image-url)
Testing bipartiteness. Given a graph G, is it bipartite?
Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)
Before attempting to design an algorithm, we need to understand structure of bipartite graphs.
Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Impossible to 2-color the odd cycle, let alone G.
Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)
Suppose no edge joins two nodes in the same layer.
By previous lemma, all edges join nodes on adjacent levels.
Bipartition:
red = nodes on odd levels,
blue = nodes on even levels.

Case (i)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)
Suppose (x, y) is an edge & x, y in same level L_j.
Let z = their lowest common ancestor in BFS tree.
Let L_i be level containing z.
Consider cycle that takes edge from x to y, then tree from y to z, then tree from z to x.
Its length is $1 + (j-i) + (j-i)$, which is odd.
Obstruction to Bipartiteness

Cor: A graph G is bipartite iff it contains no odd length cycle.

NB: the proof is algorithmic-- in a non-bipartite graph, it finds an odd cycle.
3.6 DAGs and Topological Ordering
Precedence Constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications

Course prerequisite graph: course \(v_i\) must be taken before \(v_j\)

Compilation: must compile module \(v_i\) before \(v_j\)

Pipeline of computing jobs: output of job \(v_i\) is part of input to job \(v_j\)

Manufacturing or assembly: sand it before you paint it…
Directed Acyclic Graphs

Def. A **DAG** is a directed acyclic graph, i.e., one that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A **topological order** of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, \ldots, v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

Suppose that G has a topological order \(v_1, \ldots, v_n \) and that G also has a directed cycle \(C \).

Let \(v_i \) be the lowest-indexed node in \(C \), and let \(v_j \) be the node just before \(v_i \); thus \((v_j, v_i) \) is an edge.

By our choice of \(i \), we have \(i < j \).

On the other hand, since \((v_j, v_i) \) is an edge and \(v_1, \ldots, v_n \) is a topological order, we must have \(j < i \), a contradiction.

![Diagram of directed cycle C and supposed topological order]
Directed Acyclic Graphs

Lemma.
If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u. Then, since u has at least one incoming edge (x, u), we can walk backward to x. Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits to w. C is a cycle.

Why must this happen?
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

Base case: true if $n = 1$.

Given DAG on $n > 1$ nodes, find a node v with no incoming edges.

$G - \{ v \}$ is a DAG, since deleting v cannot create cycles.
By inductive hypothesis, $G - \{ v \}$ has a topological ordering.
Place v first in topological ordering; then append nodes of $G - \{ v \}$
in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{v\}$
 and append this order after v
Topological Ordering Algorithm: Example

Topological order:
Topological Ordering Algorithm: Example

Topological order: v_1
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2 \)
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3 \)
Topological Ordering Algorithm: Example

Topological order: v_1, v_2, v_3, v_4
Topological Ordering Algorithm: Example

Topological order: \(v_1, v_2, v_3, v_4, v_5 \)
Topological Ordering Algorithm: Example

Topological order: $v_1, v_2, v_3, v_4, v_5, v_6$
Topological Ordering Algorithm: Example

Topological order: $v_1, v_2, v_3, v_4, v_5, v_6, v_7$.
Topological Sorting Algorithm

Maintain the following:
- count[w] = (remaining) number of incoming edges to node w
- S = set of (remaining) nodes with no incoming edges

Initialization:
- count[w] = 0 for all w
- count[w]++ for all edges (v,w)
- S = S ∪ {w} for all w with count[w]==0

Main loop:
- while S not empty
 - remove some v from S
 - make v next in topo order
 - for all edges from v to some w
 - decrement count[w]
 - add w to S if count[w] hits 0

Correctness: clear, I hope
Time: O(m + n) (assuming edge-list representation of graph)
Depth-First Search

Follow the first path you find as far as you can go
Back up to last unexplored edge when you reach a dead end, then go as far you can

Naturally implemented using recursive calls or a stack
DFS(v) – Recursive version

Global Initialization:
 for all nodes v, v.dfs# = -1 // mark v "undiscovered"
 dfscounter = 0

DFS(v)
 v.dfs# = dfscounter++ // v “discovered”, number it
 for each edge (v,x)
 if (x.dfs# = -1) // tree edge (x previously undiscovered)
 DFS(x)
 else ... // code for back-, fwd-, parent, edges, if needed
 // mark v “completed,” if needed