CSE417: Review

Larry Ruzzo
Winter 2006

© W.L. Ruzzo & UW CSE 1997-2006

Complexity, I

- Asymptotic Analysis
- Best/average/worst cases
- Upper/Lower Bounds
- Big O, Theta, Omega
- Analysis methods
 - loops
 - recurrence relations
 - common data structures, subroutines

Graph Algorithms

- Graphs
 - Representation (edge list/adjacency matrix)
 - Breadth/depth first search
 - Bipartitness/2-Colorability
 - DAGS and topological ordering

Design Paradigms

- Greedy
- Dynamic Programming
 - recursive solution, redundant subproblems, few
 - do all in careful order and tabulate
- Divide & Conquer
 - recursive solution
 - superlinear work
 - balanced subproblems
Examples

- Greedy
 - Interval Scheduling Problems
 - Huffman Codes

Examples

- Dynamic programming
 - Fibonacci
 - Making change/Stamp
 - Weighted Interval Scheduling
 - RNA
- Divide & Conquer
 - Merge sort
 - Closest pair of points
 - Integer multiplication (Karatsuba)

Complexity, II

- P vs NP
 - Big-O and poly vs exponential growth
 - Definition of NP - hints and verifiers
 - Example problems from slides & assigned reading
 - SAT, VertexCover, quadratic Diophantine equations, clique, independent set, TSP, Hamilton cycle, coloring, max cut
 - $P \subseteq NP \subseteq Exp$
 - Definition of (polynomial time) reduction
 - SAT \leq_p VertexCover example (how, why correct, why \leq_p, implications)
 - Definition of NP-completeness
 - 2x approximation to Euclidean TSP

Some Typical Questions

- Give O() bound on $17n^*(n-3+\log n)$
- Give O() bound on some code

 $\{ for \ i=1 \ to \ n \ \{ for \ j \ ... \}\}$

- True/False: If an alg is O(n^2), then it rarely takes more than $n^3 + 14$ steps.
- Simulate any of the algs we've studied
- Give an alg for problem X, maybe a variant of one we've studied
- Understand parts of correctness proof for an algorithm or reduction
- Implications of NP-completeness