NP-Completeness
(Chapter 8)
Some Algebra Problems (Algorithmic)

Given positive integers a, b, c

Question 1: does there exist a positive integer x such that $ax = c$?

Question 2: does there exist a positive integer x such that $ax^2 + bx = c$?

Question 3: do there exist positive integers x and y such that $ax^2 + by = c$?
Some Problems

• Independent-Set:
 – Given a graph $G=(V,E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that no two vertices in U are joined by an edge.

• Clique:
 – Given a graph $G=(V,E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.
A Brief History of Ideas

- From Classical Greece, if not earlier, "logical thought" held to be a somewhat mystical ability
- Mid 1800's: Boolean Algebra and foundations of mathematical logic created possible "mechanical" underpinnings
- 1930's: Gödel, Church, Turing, et al. prove it's impossible
More History

• 1930/40's
 – What is (is not) computable

• 1960/70's
 – What is (is not) feasibly computable
 – Goal – a (largely) technology independent theory of time required by algorithms
 – Key modeling assumptions/approximations
 • Asymptotic (Big-O), worst case is revealing
 • Polynomial, exponential time – qualitatively different
Polynomial vs Exponential Growth

2^{2n}

$2^{n/10}$

$1000n^2$
Next year's computer will be 2x faster. If I can solve problem of size n_0 today, how large a problem can I solve in the same time next year?

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Increase</th>
<th>E.g. $T=10^{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$n_0 \rightarrow 2n_0$</td>
<td>10^{12}</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>$n_0 \rightarrow \sqrt{2}n_0$</td>
<td>10^6</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>$n_0 \rightarrow 3\sqrt{2}n_0$</td>
<td>10^4</td>
</tr>
<tr>
<td>$2^n/10$</td>
<td>$n_0 \rightarrow n_0 + 10$</td>
<td>400</td>
</tr>
<tr>
<td>2^n</td>
<td>$n_0 \rightarrow n_0 + 1$</td>
<td>40</td>
</tr>
</tbody>
</table>

Another view of Poly vs Exp
Polynomial versus exponential

- We’ll say any algorithm whose run-time is
 - polynomial is good
 - bigger than polynomial is bad

- Note – of course there are exceptions:
 - \(n^{100} \) is bigger than \((1.001)^n\) for most practical values of \(n \) but usually such run-times don’t show up
 - There are algorithms that have run-times like \(O(2^{n/22}) \) and these may be useful for small input sizes, but they're not too common either
Some Convenient Technicalities

• "Problem" – the general case
 – Ex: The Clique Problem: Given a graph G and an integer k, does G contain a k-clique?

• "Problem Instance" – the specific cases
 – Ex: Does \([\text{triangle}]\) contain a 4-clique? (no)
 – Ex: Does \([\text{triangle}]\) contain a 3-clique? (yes)

• Decision Problems – Just Yes/No answer

• Problems as Sets of "Yes" Instances
 – Ex: CLIQUE = \{ (G,k) \mid G \text{ contains a k-clique} \}
 • E.g., (\([\text{triangle}],[4]\)) \not\in \text{CLIQUE}
 • E.g., (\([\text{triangle}],[3]\)) \in \text{CLIQUE}
Decision problems

- Computational complexity usually analyzed using decision problems
 - answer is just 1 or 0 (yes or no).

- Why?
 - much simpler to deal with
 - *deciding* whether G has a k-clique, is certainly no harder than *finding* a k-clique in G, so a *lower* bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does G still have a k-clique after I remove this vertex?)
The class P

Definition: P = set of (decision) problems solvable by computers in polynomial time.

i.e. $T(n) = O(n^k)$ for some fixed k.

These problems are sometimes called *tractable* problems.

Examples: sorting, shortest path, MST, connectivity, various dynamic programming – *all of 417 up to now except Change-Making/Stamp problem*
Beyond \mathbf{P}?

- There are many natural, practical problems for which we don’t know any polynomial-time algorithms

- e.g. CLIQUE:
 - Given a weighted graph G and an integer k, does there exist a k-clique in G?

- e.g. quadratic Diophantine equations:
 - Given a, b, $c \in \mathbb{N}$, $\exists x, y \in \mathbb{N}$ s.t. $ax^2 + by = c$?
Some Problems

• Independent-Set:
 – Given a graph $G=(V,E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that no two vertices in U are joined by an edge.

• Clique:
 – Given a graph $G=(V,E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.
Some More Problems

• Euler Tour:
 • Given a graph \(G=(V,E) \) is there a cycle traversing each edge once.

• Hamilton Tour:
 • Given a graph \(G=(V,E) \) is there a simple cycle of length \(|V| \), i.e., traversing each vertex once.

• TSP:
 • Given a weighted graph \(G=(V,E,w) \) and an integer \(k \), is there a Hamilton tour of \(G \) with total weight \(\leq k \).
Satisfiability

- Boolean variables x_1, \ldots, x_n
 - taking values in $\{0,1\}$. 0=false, 1=true
- Literals
 - x_i or $\neg x_i$ for $i=1,\ldots,n$
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses
Satisfiability

- CNF formula example
 - \((x_1 \lor \neg x_3 \lor x_7) \land (\neg x_1 \lor \neg x_4 \lor x_5 \lor \neg x_7)\)

- If there is some assignment of 0’s and 1’s to the variables that makes it true then we say the formula is *satisfiable*
 - the one above is, the following isn’t
 - \(x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3\)

- Satisfiability: Given a CNF formula \(F\), is it satisfiable?
Satisfiable?

\[(\ x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land \]
\[(\ x \lor \neg y \lor z) \land (\neg x \lor \neg y \lor z) \land \]
\[(\neg x \lor \neg y \lor \neg z) \land (\ x \lor y \lor z) \land \]
\[(\ x \lor \neg y \lor z) \land (\ x \lor y \lor \neg z)\]

\[(\ x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land \]
\[(\ x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor z) \land \]
\[(\neg x \lor \neg y \lor \neg z) \land (\ x \lor y \lor z) \land \]
\[(\ x \lor \neg y \lor z) \land (\ x \lor y \lor \neg z)\]
More History – As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- *None* had poly time algorithms; exponential was best known

- But, it turns out they all have a very deep similarity under the skin
Some Problem Pairs

- Euler Tour
- 2-SAT
- Min Cut
- Shortest Path
- Hamilton Tour
- 3-SAT
- Max Cut
- Longest Path

Similar pairs; seemingly different computationally

Superficially different; similar computationally
Common property of these problems

• There is a special piece of information, a short hint or proof, that allows you to efficiently (in polynomial-time) verify that the YES answer is correct. This hint might be very hard to find

• e.g.
 – TSP: the tour itself,
 – Independent-Set, Clique: the set U
 – Satisfiability: an assignment that makes F true.
 – Quadratic Diophantine eqns: the numbers x & y.
The complexity class \(\textbf{NP} \)

\(\textbf{NP} \) consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint

And

- No hint can fool your polynomial time verifier into saying YES for a NO instance
 - (implausible for all exponential time problems)
More Precise Definition of \mathbf{NP}

- A decision problem is in \mathbf{NP} iff there is a polynomial time procedure $v(.,.)$, and an integer k such that
 - for every YES problem instance x there is a hint h with $|h| \leq |x|^k$ such that $v(x,h) = \text{YES}$
 - for every NO problem instance x there is no hint h with $|h| \leq |x|^k$ such that $v(x,h) = \text{YES}$

- “Hints” sometimes called “Certificates”
Example: CLIQUE is in NP

procedure v(x,h)
 if
 x is a well-formed representation of a graph G = (V, E) and an integer k,
 and
 h is a well-formed representation of a k-vertex subset U of V,
 and
 U is a clique in G,
 then output "YES"
 else output "I'm unconvinced"
Is it correct?

- For every $x = (G,k)$ such that G contains a k-clique, there is a hint h that will cause $v(x,h)$ to say YES, namely $h = \text{a list of the vertices in such a } k\text{-clique}$

and

- No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if $x = (G,k)$ but G does not have any cliques of size k (the interesting case)
Another example: SAT ∈ NP

- **Hint:** the satisfying assignment A
- **Verifier:** $v(F,A) = \text{syntax}(F,A) \land \text{satisfies}(F,A)$
 - Syntax: True iff F is a well-formed formula & A is a truth-assignment to its variables
 - Satisfies: plug A into F and evaluate
- **Correctness:**
 - If F is satisfiable, it has some satisfying assignment A, and we’ll recognize it
 - If F is unsatisfiable, it doesn’t, and we won’t be fooled
Keys to showing that a problem is in NP

• What's the output? (must be YES/NO)
• What's the input? Which are YES?
• For every given YES input, is there a hint that would help? Is it polynomial length?
 – OK if some inputs need no hint
• For any given NO input, is there a hint that would trick you?
NP = Polynomial-time

verification

P = Polynomial-time

solvable
Solving NP problems without hints

• The only obvious algorithm for most of these problems is brute force:
 – try all possible hints and check each one to see if it works.
 – Exponential time:
 • 2^n truth assignments for n variables
 • $n!$ possible TSP tours of n vertices
 • $\binom{n}{k}$ possible k element subsets of n vertices
 • etc.
 • …and to date, every alg, even much less-obvious ones, are slow, too
Problems in P can also be verified in polynomial-time

Shortest Path: Given a graph G with edge lengths, is there a path from s to t of length $\leq k$?

Verify: Given a purported path from s to t, is it a path, is its length $\leq k$?

Small Spanning Tree: Given a weighted undirected graph G, is there a spanning tree of weight $\leq k$?

Verify: Given a purported spanning tree, is it a spanning tree, is its weight $\leq k$?

(But the hints aren’t really needed in these cases…)
• Theorem: Every problem in NP can be solved deterministically in exponential time

• Proof: “hints” are only n^k long; try all 2^{n^k} possibilities, say by backtracking. If any succeed, say YES; if all fail, say NO.
P and NP

- Every problem in \(P \) is in \(NP \)
 - one doesn’t even need a hint for problems in \(P \) so just ignore any hint you are given

- Every problem in \(NP \) is in exponential time

- I.e., \(P \subseteq NP \subseteq Exp \)
- We know \(P \neq Exp \), so either \(P \neq NP \), or \(NP \neq Exp \) (most likely both)
P vs NP

• Theory
 – P = NP ?
 – Open Problem!
 – I bet against it

• Practice
 – Many interesting, useful, natural, well-studied problems known to be NP-complete
 – With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances
A problem NOT in NP;
A bogus “proof” to the contrary

- $EEXP = \{(p,x) \mid \text{program } p \text{ accepts input } x \text{ in } < 2^{2^{|x|}} \text{ steps} \}$

NON Theorem: EEXP in NP
- “Proof” 1: Hint = step-by-step trace of the computation of p on x; verify step-by-step
More Connections

• Some Examples in NP
 – Satisfiability
 – Independent-Set
 – Clique
 – Vertex Cover

• All hard to solve; hints seem to help on all

• Very surprising fact:
 – Fast solution to *any* gives fast solution to *all!*
The class NP-complete

We are pretty sure that no problem in NP – P can be solved in polynomial time.

Non-Definition: NP-complete = the hardest problems in the class NP. (Formal definition later.)

Interesting fact: If any one NP-complete problem could be solved in polynomial time, then all NP problems could be solved in polynomial time.
Complexity Classes

\[\text{NP} = \text{Poly-time verifiable} \]

\[\text{P} = \text{Poly-time solvable} \]

\[\text{NP-Complete} = \text{“Hardest” problems in NP} \]
The class NP-complete (cont.)

Thousands of important problems have been shown to be NP-complete.

Fact (Dogma): The general belief is that there is no efficient algorithm for any **NP-complete** problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover, Hamiltonian cycle, TSP, bin packing.
Complexity Classes of Problems

- NP
 - NP-Complete
 - SAT
 - clique
 - vertex cover
 - traveling salesman
 - P
 - sorting
 - MST
 - BCC
 - max flow
Does $P = NP$?

- This is an open question.
- To show that $P = NP$, we have to show that every problem that belongs to NP can be solved by a polynomial time deterministic algorithm.
- No one has shown this yet.
- (It seems unlikely to be true.)
Earlier in this class we learned techniques for solving problems in P.

Question: Do we just throw up our hands if we come across a problem we suspect **not to be** in P?
Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:
1) Prove your problem is **NP-hard** or **-complete**
 (a common, but not guaranteed outcome)
2) Come up with an algorithm to solve the problem **usually** or **approximately**.
Reductions: a useful tool

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select \((n/2)_{\text{nd}}\)

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.
Reductions: Why useful

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A (nearly as fast; takes some time to set up call, etc.)

If *every* algorithm for A is slow, then *no* algorithm for B can be fast.

“complexity of A” \leq “complexity of B” + “complexity of reduction”
SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF) is **satisfiable** if there exists a truth assignment of 0’s and 1’s to its variables such that the value of the expression is 1. Example:

\[S = (x + y + \neg z) \cdot (\neg x + y + z) \cdot (\neg x + \neg y + \neg z) \]

Example above is satisfiable. (We can see this by setting \(x = 1, y = 1 \) and \(z = 0 \).)
Input: Undirected graph $G = (V, E)$, integer k.

Output: True iff there is a subset C of V of size $\leq k$ such that every edge in E is incident to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

In NP? Exercise
$3\text{SAT} \leq_p \text{VertexCover}$
3SAT \leq_p \text{VertexCover}
$3\text{SAT} \leq_p \text{VertexCover}$
3SAT \leq_p VertexCover

$k=6$
3SAT \leq_p VertexCover

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3)$$
3SAT \leq_p \text{VertexCover}

3-SAT Instance:
- Variables: \(x_1, x_2, \ldots\)
- Literals: \(y_{i,j}, 1 \leq i \leq q, 1 \leq j \leq 3\)
- Clauses: \(c_i = y_{i1} \lor y_{i2} \lor y_{i3}, 1 \leq i \leq q\)
- Formula: \(c = c_1 \land c_2 \land \ldots \land c_q\)

VertexCover Instance:
- \(k = 2q\)
- \(G = (V, E)\)
- \(V = \{ [i,j] \mid 1 \leq i \leq q, 1 \leq j \leq 3 \}\)
- \(E = \{ ([i,j], [k,l]) \mid i = k \text{ or } y_{ij} = \neg y_{kl} \}\)
$3\text{SAT} \leq_p \text{VertexCover}$

$k=6$
Correctness of “3-SAT \leq_p VertexCover”

Summary of reduction function f:
Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in same group, plus complementary literals $(x, \neg x)$. Output graph G plus integer $k = 2 \times$ number of clauses.
Note: f does not know whether formula is satisfiable or not; does not know if G has k-cover; does not try to find satisfying assignment or cover.

Correctness:
1. Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
2. Show c in 3-SAT iff $f(c)=(G,k)$ in VertexCover:
(\Rightarrow) Given an assignment satisfying c, pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every $(x, \neg x)$ edge is covered.
(\Leftarrow) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) truth assignment since no $(x, \neg x)$ pair uncovered. It satisfies c since there is one uncovered node in each clause triangle (else some other clause triangle has > 1 uncovered node, hence an uncovered edge.)
Utility of “3-SAT \leq_p \text{VertexCover}”

• *Suppose* we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:
 – Given 3-CNF formula w, build Vertex Cover instance $y = f(w)$ as above, run the fast VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES, y has a vertex cover of the given size”

• On the other hand, *suppose* no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.
“3-SAT \leq_p VertexCover”
Retrospective

• Previous slide: two *suppositions*
• Somewhat clumsy to have to state things that way.
• Alternative: abstract out the key elements, give it a name ("polynomial time reduction"), then properties like the above always hold.
Definition: Let A and B be two problems. We say that A is \textbf{polynomially reducible} to B if there exists a polynomial-time algorithm f that converts each instance x of problem A to an instance $f(x)$ of B such that x is a YES instance of A iff $f(x)$ is a YES instance of B.

$$x \in A \iff f(x) \in B$$
Polynomial-Time Reductions (cont.)

Define: \(A \leq_p B \) “A is polynomial-time reducible to B”, iff there is a polynomial-time computable function \(f \) such that: \(x \in A \iff f(x) \in B \)

“complexity of A” \(\leq \) “complexity of B” + “complexity of f”

(1) \(A \leq_p B \) and \(B \in P \) \(\Rightarrow \) \(A \in P \)

(2) \(A \leq_p B \) and \(A \not\in P \) \(\Rightarrow \) \(B \not\in P \)

(3) \(A \leq_p B \) and \(B \leq_p C \) \(\Rightarrow \) \(A \leq_p C \) (transitivity)
Using an Algorithm for B to Solve A

Algorithm to solve A

\[\begin{array}{c}
\text{x} \\
\downarrow \text{Algorithm to compute f} \\
f(x) \\
\downarrow \text{Algorithm to solve B} \\
f(x) \in B? \\
\downarrow x \in A?
\end{array} \]

“If $A \leq_p B$, and we can solve B in polynomial time, then we can solve A in polynomial time also.”

Ex: suppose f takes $O(n^3)$ and algorithm for B takes $O(n^2)$. How long does the above algorithm for A take?
Definition of NP-Completeness

Definition: Problem B is **NP-hard** if every problem in NP is polynomially reducible to B.

Definition: Problem B is **NP-complete** if:

1. B belongs to NP, and
2. B is NP-hard.
Proving a problem is NP-complete

- Technically, for condition (2) we have to show that every problem in NP is reducible to B. (yikes!) This sounds like a lot of work.
- For the very first NP-complete problem (SAT) this had to be proved directly.
- However, once we have one NP-complete problem, then we don’t have to do this every time.
- Why? Transitivity.
Re-stated Definition

Lemma: Problem B is **NP-complete** if:

(1) B belongs to NP, and

(2’) A is polynomial-time reducible to B, for some problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is sufficient to show that SAT or any other NP-complete problem is polynomial-time reducible to B.

Usefulness of Transitivity

Now we only have to show $L' \leq_p L$, for some NP-complete problem L', in order to show that L is NP-hard. Why is this equivalent?

1) Since L' is NP-complete, we know that L' is NP-hard. That is:

$$\forall L'' \in NP, \text{ we have } L'' \leq_p L'$$

2) If we show $L' \leq_p L$, then by transitivity we know that: $\forall L'' \in NP, \text{ we have } L'' \leq_p L.$

Thus L is NP-hard.
Ex: VertexCover is NP-complete

• 3-SAT is NP-complete (shown by S. Cook)
• $3\text{-SAT} \leq_p \text{VertexCover}$
• VertexCover is in NP (we showed this earlier)
• Therefore VertexCover is also NP-complete

• So, poly-time algorithm for VertexCover would give poly-time algs for *everything* in NP
NP-complete problem: 3-Coloring

Input: An undirected graph $G=(V,E)$.
Output: True iff there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

In NP? Exercise
A 3-Coloring Gadget:

In what ways can this be 3-colored?
A 3-Coloring Gadget: "Sort of an OR gate"

(1) if any input is T, the output can be T
(2) if output is T, some input must be T

Exercise: find all colorings of 5 nodes
3SAT \leq_p 3Color

3-SAT Instance:
- Variables: x_1, x_2, \ldots
- Literals: $y_{i,j}, 1 \leq i \leq q, 1 \leq j \leq 3$
- Clauses: $c_i = y_{i1} \lor y_{i2} \lor y_{i3}, 1 \leq i \leq q$
- Formula: $c = c_1 \land c_2 \land \ldots \land c_q$

3Color Instance:
- $G = (V, E)$
- $6q + 2n + 3$ vertices
- $13q + 3n + 3$ edges
- (See Example for details)
3SAT \leq_p 3Color Example

\[(x_1 \lor \neg x_1 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor \neg x_2)\]

6q + 2n + 3 vertices

13q + 3n + 3 edges
Correctness of “3-SAT \(\leq_p\) 3Coloring”

Summary of reduction function \(f\):
Given formula, make \(G\) with T-F-N triangle, 1 pair of literal nodes per variable, 2 “or” gadgets per clause, connected as in example.

Note: again, \(f\) does not know or construct satisfying assignment or coloring.

Correctness:
1. Show \(f\) poly time computable: A key point is that graph size is polynomial in formula size; graph looks messy, but pattern is basically straightforward.
2. Show \(c\) in 3-SAT iff \(f(c)\) is 3-colorable:
 \(\Rightarrow\) Given an assignment satisfying \(c\), color literals T/F as per assignment; can color “or” gadgets so output nodes are T since each clause is satisfied.
 \(\Leftarrow\) Given a 3-coloring of \(f(c)\), name colors T-N-F as in example. All square nodes are T or F (since all adjacent to N). Each variable pair \((x_i, \neg x_i)\) must have complementary labels since they’re adjacent. Define assignment based on colors of \(x_i\’s\). Clause “output” nodes must be colored T since they’re adjacent to both N & F. By fact noted earlier, output can be T only if at least one input is T, hence it is a satisfying assignment.
Planar 3-Coloring is also NP-Complete
Common Errors in NP-completeness Proofs

• Backwards reductions
 Bipartiteness \leq_p SAT is true, but not so useful.
 (XYZ \leq_p SAT shows XYZ in NP, does \textit{not} show it’s hard.)

• Sloooow Reductions
 “Find a satisfying assignment, then output…”

• Half Reductions
 Delete dashed edges in 3Color reduction. It’s still true that “c satisfiable \Rightarrow G is 3 colorable”, but 3-colorings don’t necessarily give good assignments.
Coping with NP-Completeness

• Is your real problem a special subcase?
 – E.g. 3-SAT is NP-complete, but 2-SAT is not;
 – Ditto 3- vs 2-coloring
 – E.g. maybe you only need planar graphs, or degree 3 graphs, or …

• Guaranteed approximation good enough?
 – E.g. Euclidean TSP within 1.5 * Opt in poly time

• Clever exhaustive search may be fast enough in practice, e.g. Backtrack, Branch & Bound, pruning

• Heuristics – usually a good approximation and/or usually fast
NP-complete problem: TSP

Input: An undirected graph $G = (V, E)$ with integer edge weights, and an integer b.

Output: YES iff there is a simple cycle in G passing through all vertices (once), with total cost $\leq b$.

Example:

$b = 34$
2x Approximation to Euclidean TSP

- A TSP tour visits all vertices, so contains a spanning tree, so TSP cost is > cost of min spanning tree.
 - Find MST
 - Find “DFS” Tour
 - Shortcut
- TSP \leq \text{shortcut} < \text{DFST} = 2 \times \text{MST} < 2 \times \text{TSP}
Summary

- Big-O – good
- P – good
- Exp – bad
- Exp, but hints help? NP
- NP-hard, NP-complete – bad (I bet)
- To show NP-complete – reductions
- NP-complete = hopeless? – no, but you need to lower your expectations: heuristics & approximations.