CSE 421: Introduction to Algorithms

Dynamic Programming
“Dynamic Programming”

Program — A plan or procedure for dealing with some matter — Webster’s New World Dictionary
Dynamic Programming

• Outline:
 ▪ Example 1 – Licking Stamps
 ▪ General Principles
 ▪ Example 2 – Knapsack (§ 5.10)
 ▪ Example 3 – Sequence Comparison (§ 6.8)
Licking Stamps

• Given:
 ▪ Large supply of 5¢, 4¢, and 1¢ stamps
 ▪ An amount N

• Problem: choose fewest stamps totaling N
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ Stamps</th>
<th># of 4¢ Stamps</th>
<th># of 1¢ Stamps</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Moral: Greed doesn’t pay
A Simple Algorithm

- At most N stamps needed, etc.

  ```
  for a = 0, ..., N {
    for b = 0, ..., N {
      for c = 0, ..., N {
        if (5a+4b+c == N && a+b+c is new min)
          {retain (a,b,c);}}}
  output retained triple;
  ```

- **Time: \(O(N^3)\)**
 (Not too hard to see some optimizations, but we’re after bigger fish…)
Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for $N-v$.

Proof: if not, we could improve the solution for N by using opt for $N-v$.

$$M(i) = \min \begin{cases}
0 & i=0 \\
1+M(i-5) & i \geq 5 \\
1+M(i-4) & i \geq 4 \\
1+M(i-1) & i \geq 1
\end{cases}$$

where $M(i) = \min$ number of stamps totaling $i \in \mathbb{C}$
New Idea: Recursion

\[M(i) = \min \begin{cases}
0 & i = 0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{cases} \]

Time: > \(3^{N/5}\)
Another New Idea: Avoid Recomputation

• Tabulate values of solved subproblems
 ▪ Top-down: “memoization”
 ▪ Bottom up:

 for i = 0, …, N do \(M[i] = \min \begin{cases}
 0 & i = 0 \\
 1 + M[i-5] & i \geq 5 \\
 1 + M[i-4] & i \geq 4 \\
 1 + M[i-1] & i \geq 1
\end{cases} \);

• Time: O(N)
Finding How Many Stamps

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + \text{Min}(3,1,3) = 2
Finding Which Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$1 + \text{Min}(3, 1, 3) = 2$
Complexity Note

• O(N) is better than O(N^3) or O(3^{N/5})

• But still *exponential* in input size (log N bits)

 (E.g., miserably slow if N is 64 bits – c \cdot 2^{64} steps for 64 bit input.)

• Note: can do in O(1) for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later
Elements of Dynamic Programming

• What feature did we use?
• What should we look for to use again?

• “Optimal Substructure”
 Optimal solution contains optimal subproblems
 A non-example: min (number of stamps mod 2)

• “Repeated Subproblems”
 The same subproblems arise in various ways