Dynamic Programming

"Dynamic Programming"

Program — A plan or procedure for dealing with some matter — Webster’s New World Dictionary

Dynamic Programming

- Outline:
 - Example 1 — Licking Stamps
 - General Principles
 - Example 2 — Knapsack (§ 5.10)
 - Example 3 — Sequence Comparison (§ 6.8)

Licking Stamps

- Given:
 - Large supply of 5¢, 4¢, and 1¢ stamps
 - An amount N
- Problem: choose fewest stamps totaling N
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ Stamps</th>
<th># of 4¢ Stamps</th>
<th># of 1¢ Stamps</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Moral: Greed doesn’t pay

A Simple Algorithm

- At most N stamps needed, etc.

 \[
 \text{for } a = 0, \ldots, N \{ \\
 \quad \text{for } b = 0, \ldots, N \{ \\
 \quad \quad \text{for } c = 0, \ldots, N \{ \\
 \quad \quad \quad \text{if } (5a + 4b + c == N \&\& a+b+c \text{ is new min}) \\
 \quad \quad \quad \quad \{ \text{retain } (a,b,c) \}; \}\}
 \]

 output retained triple;

- Time: \(O(N^3)\)

 (Not too hard to see some optimizations, but we’re after bigger fish…)

Better Idea

Theorem: If last stamp licked in an optimal solution has value v, then previous stamps form an optimal solution for \(N-v\).

Proof: if not, we could improve the solution for \(N\) by using opt for \(N-v\).

\[
M(i) = \min \begin{cases}
0 & i=0 \\
1+M(i-5) & i\geq5 \\
1+M(i-4) & i\geq4 \\
1+M(i-1) & i\geq1
\end{cases}
\]

where \(M(0) = \text{min number of stamps totaling } i\)

New Idea: Recursion

\[
M(i) = \min \begin{cases}
0 & i=0 \\
1+M(i-5) & i\geq5 \\
1+M(i-4) & i\geq4 \\
1+M(i-1) & i\geq1
\end{cases}
\]

Time: \(>3^{4/3}\)
Another New Idea: Avoid Recomputation

- Tabulate values of solved subproblems
 - Top-down: “memoization”
 - Bottom up:

 for \(i = 0, \ldots, N \) do

 \[
 M[i] = \min \begin{cases} \ 0 & i = 0 \\
 \ 1 + M[i-5] & i \geq 5 \\
 \ 1 + M[i-4] & i \geq 4 \\
 \ 1 + M[i-1] & i \geq 1 \\
 \end{cases}
 \]

- Time: \(O(N) \)

Finding How Many Stamps

Finding Which Stamps: Trace-Back

Complexity Note

- \(O(N) \) is better than \(O(N^3) \) or \(O(3^{N/5}) \)
- But still exponential in input size (log \(N \) bits)

 (E.g., miserably slow if \(N \) is 64 bits – \(\sim 2^{64} \) steps for 64 bit input.)

- Note: can do in \(O(1) \) for 5¢, 4¢, and 1¢ but not in general. See “NP-Completeness” later
Elements of Dynamic Programming

• What feature did we use?
• What should we look for to use again?

• “Optimal Substructure”
 Optimal solution contains optimal subproblems
 A non-example: min (number of stamps mod 2)

• “Repeated Subproblems”
 The same subproblems arise in various ways