CSE 417: Algorithms and Computational Complexity

Winter 2006
Instructor: W. L. Ruzzo
Lectures 16-19
Divide and Conquer Algorithms

The Divide and Conquer Paradigm

- Outline:
 - General Idea
 - Review of Merge Sort
 - Why does it work?
 - Importance of balance
 - Importance of super-linear growth
 - Two interesting applications
 - Polynomial Multiplication
 - Matrix Multiplication
 - Finding & Solving Recurrences

Algorithm Design Techniques

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

- $T(n) = 2T(n/2) + cn$, $n \geq 2$
- $T(1) = 0$
- Solution: $\Theta(n \log n)$
 (details later)
Merge Sort

MS(A: array[1..n]) returns array[1..n] {
 If(n=1) return A[1];
 New U:array[1:n/2] = MS(A[1..n/2]);
 New L:array[1:n/2] = MS(A[n/2+1..n]);
 Return(Merge(U,L));
}

Merge(U,L: array[1..n]) {
 New C: array[1..2n];
 a=1; b=1;
 For i = 1 to 2n
 C[i] = "smaller of U[a], L[b] and correspondingly a++ or b++";
 Return C;
}

Going From Code to Recurrence

1. Carefully define what you’re counting, and write it down!
 “Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length n ≥ 1”

2. In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

3. Write Recurrence(s)

The Recurrence

\[
C(n) = \begin{cases}
0 & \text{if } n = 1 \\
2C(n/2) + (n - 1) & \text{if } n > 1
\end{cases}
\]

Total time: proportional to C(n)
(loops, copying data, parameter passing, etc.)
Why Balanced Subdivision?

- Alternative "divide & conquer" algorithm:
 - Sort n-1
 - Sort last 1
 - Merge them

- \[T(n) = T(n-1) + T(1) + 3n \text{ for } n \geq 2 \]
- \[T(1) = 0 \]
- Solution: \[3n + 3(n-1) + 3(n-2) \ldots = \Theta(n^2) \]

Another D&C Approach

- Suppose we've already invented DumbSort, taking time \(n^2 \)
- Try Just One Level of divide & conquer:
 - DumbSort(first \(n/2 \) elements)
 - DumbSort(last \(n/2 \) elements)
 - Merge results

- Time: \[2 \left(\frac{n}{2} \right)^2 + n = \frac{n^2}{2} + n \ll n^2 \]
 - Almost twice as fast!

Another D&C Approach, cont.

- Moral 1: “two halves are better than a whole”
 Two problems of half size are better than one full-size problem, even given the \(O(n) \) overhead of recombining, since the base algorithm has super-linear complexity.

- Moral 2: “If a little's good, then more's better”
 two levels of D&C would be almost 4 times faster. 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

Another D&C Approach, cont.

- Moral 3: unbalanced division less good:
 - \[(.1n)^2 + (.9n)^2 + n = .82n^2 + n \]
 - The 18% savings compounds significantly if you carry recursion to more levels, actually giving \(O(n\log n) \), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.
 - This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.
 - \[(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n \]
 - Little improvement here.
5.4 Closest Pair of Points

Closest Pair of Points

Closest pair: Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with \(\Theta(n^2) \) comparisons.

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same x coordinate.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Conquer:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side.
 - assume the $\Theta(n^2)$
 - Return best of 3 solutions.

Find closest pair with one point in each side, assuming that distance $< \delta$.

\[\delta = \min(12, 21) \]
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance \(\delta \).

- Observation: only need to consider points within \(\delta \) of line \(L \).

\[\delta = \min(12, 21) \]

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < \(\delta \).

- Observation: only need to consider points within \(\delta \) of line \(L \).

Sort points in \(2\delta \)-strip by their y coordinate.

- Only check distances of those within 11 positions in sorted list!

\[\delta = \min(12, 21) \]

Closest Pair of Points

Def.: Let \(s_i \) be the point in the \(2\delta \)-strip, with the \(i \)th smallest y-coordinate.

Claim: If \(|i - j| \geq 8 \), then the distance between \(s_i \) and \(s_j \) is at least \(\delta \).

Pf.
- No two points lie in same \(\frac{1}{2}\delta \)-by-\(\frac{1}{2}\delta \) box.
- Only 8 boxes
Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 if(n <= ??) return ??

 Compute separation line L such that half the points are on one side and half on the other side.
 δ_1 = Closest-Pair(left half)
 δ_2 = Closest-Pair(right half)
 δ = min(δ_1, δ_2)

 Delete all points further than δ from separation line L

 Sort remaining points p[1].p[m] by y-coordinate.
 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + δ
 δ = min(δ, distance between p[i] and p[i+k]);
 k++;
 return δ.
 }

Going From Code to Recurrence

1. Carefully define what you’re counting, and write it down!
 "Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length n = 1"

2. In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

3. Write Recurrence(s)

Closest Pair of Points: Analysis

Running time.

\[
T(n) = \begin{cases}
0 & n = 1 \\
2T(n/2) + O(n) & n > 1
\end{cases} \Rightarrow T(n) = O(n \log n)
\]

BUT - that’s only the number of distance calculations
Closest Pair Algorithm

Closest-Pair(p_1, ..., p_n) {
 if (n <= 1) return \infty
 Compute separation line L such that half the points are on one side and half on the other side.
 \delta_1 = Closest-Pair(left half)
 \delta_2 = Closest-Pair(right half)
 \delta = \min(\delta_1, \delta_2)
 Delete all points further than \delta from separation line L
 Sort remaining points p[1], p[m] by y-coordinate.
 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + \delta
 \delta = \min(\delta, distance between p[i] and p[i+k]);
 k++;
 return \delta.
}

5.5 Integer Multiplication

Add. Given two n-digit integers a and b, compute a + b.
 - O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a \times b.
 - Brute force solution: \Theta(n^2) bit operations.
Divide-and-Conquer Multiplication: Warmup

To multiply two n-digit integers:
- Multiply four \(\frac{n}{2} \)-digit integers.
- Add two \(\frac{n}{2} \)-digit integers, and shift to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
y = 2^{n/2} \cdot y_1 + y_0
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)
= 2^n \cdot x_1 y_1 + 2^n/2 \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0
\]

Karatsuba Multiplication

To multiply two n-digit integers:
- Add two \(\frac{n}{3} \)-digit integers.
- Multiply three \(\frac{n}{3} \)-digit integers.
- Add, subtract, and shift \(\frac{n}{3} \)-digit integers to obtain result.

\[
x = 2^{n/3} \cdot x_1 + x_0
y = 2^{n/3} \cdot y_1 + y_0
xy = 2^{n/3} \cdot x_1 y_1 + 2^n/2 \cdot x_1 y_0 + x_0 y_1 + x_0 y_0
\]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in \(O(n^{1.58}) \) bit operations.

Recurrences

- Where they come from, how to find them (above)
- Next: how to solve them

Multiplication – The Bottom Line

- Naïve: \(\Theta(n^2) \)
- Karatsuba: \(\Theta(n^{1.59...}) \)
- Amusing exercise: generalize Karatsuba to do 5 size n/3 subproblems \(\Rightarrow \Theta(n^{1.48...}) \)
- Best known: \(\Theta(n \log n \log \log n) \)
 - "Fast Fourier Transform"
 - but mostly unused in practice (unless you need really big numbers)
Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

- $T(n) = 2T(n/2) + cn$, $n \geq 2$
- $T(1) = 0$
- Solution: $\Theta(n \log n)$ (details later)

Log n levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1=2^0</td>
<td>n</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>2=2^1</td>
<td>n/2</td>
<td>$2cn/2$</td>
</tr>
<tr>
<td>2</td>
<td>4=2^2</td>
<td>n/4</td>
<td>$4cn/4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>n/2^i</td>
<td>$2^i cn/2^i$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k-1</td>
<td>2^{k-1}</td>
<td>n/2^{k-1}</td>
<td>$2^{k-1} cn/2^{k-1}$</td>
</tr>
<tr>
<td>k</td>
<td>2^k</td>
<td>n/2^k=1</td>
<td>$2^k T(1)$</td>
</tr>
</tbody>
</table>

Total work: add last column

Solve: $T(1) = c$

$T(n) = 2T(n/2) + cn$

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1=3^0</td>
<td>n</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>3=3^1</td>
<td>n/2</td>
<td>$3cn/2$</td>
</tr>
<tr>
<td>2</td>
<td>9=3^2</td>
<td>n/4</td>
<td>$9cn/4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>3^i</td>
<td>n/2^i</td>
<td>$3^i cn/2^i$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k-1</td>
<td>3^{k-1}</td>
<td>n/2^{k-1}</td>
<td>$3^{k-1} cn/2^{k-1}$</td>
</tr>
<tr>
<td>k</td>
<td>3^k</td>
<td>n/2^k=1</td>
<td>$3^k T(1)$</td>
</tr>
</tbody>
</table>

Total Work: $T(n) = \sum_{i=0}^{k} 3^i cn / 2^i$

Solve: $T(1) = c$

$T(n) = 4T(n/2) + cn$

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1=4^0</td>
<td>n</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>4=4^1</td>
<td>n/2</td>
<td>$4cn/2$</td>
</tr>
<tr>
<td>2</td>
<td>16=4^2</td>
<td>n/4</td>
<td>$16cn/4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>4^i</td>
<td>n/2^i</td>
<td>$4^i cn/2^i$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k-1</td>
<td>4^{k-1}</td>
<td>n/2^{k-1}</td>
<td>$4^{k-1} cn/2^{k-1}$</td>
</tr>
<tr>
<td>k</td>
<td>4^k</td>
<td>n/2^k=1</td>
<td>$4^k T(1)$</td>
</tr>
</tbody>
</table>

$\sum_{i=0}^{k} 4^i cn / 2^i = O(n^2)$

Solve: $T(1) = c$

$T(n) = 3T(n/2) + cn$

$\sum_{i=0}^{k} 3^i cn / 2^i = O(n^2)$
Solve: \(T(1) = c \)
\(T(n) = 3 \, T(n/2) + cn \) (cont.)

\[
T(n) = \sum_{i=0}^{k} 3^i cn / 2^i \\
= cn \sum_{i=0}^{k} 3^i / 2^i \\
= cn \sum_{i=0}^{k} \left(\frac{3}{2} \right)^i \\
= cn \left(\frac{\left(\frac{3}{2} \right)^{k+1} - 1}{\frac{3}{2} - 1} \right) \\
= cn \frac{3^k}{2^k} \quad (x = 1)
\]

\[
\sum_{i=0}^{k} x^i = x^{k+1} - 1 \\
x - 1
\]

\[
= 3cn \left(\frac{3}{2} \right)^k < 2cn \left(\frac{3}{2} \right)^{k+1} = 3cn \left(\frac{3}{2} \right)^k
\]

Master Divide and Conquer Recurrence

- If \(T(n) = aT(n/b)+cn^k \) for \(n > b \) then
 - if \(a > b^k \) then \(T(n) \) is \(\Theta(n^{\log_a a}) \) [many subproblems => leaves dominate]
 - if \(a < b^k \) then \(T(n) \) is \(\Theta(n^k) \) [few subproblems => top level dominates]
 - if \(a = b^k \) then \(T(n) \) is \(\Theta(n^k \log n) \) [balanced => all \(\log n \) levels contribute]

- Works even if it is \(\lceil n/b \rceil \) instead of \(n/b \).
D & C Summary

- “two halves are better than a whole”
 if the base algorithm has super-linear complexity.

- “If a little’s good, then more’s better”
 repeat above, recursively

- Analysis: recursion tree or Master Recurrence