CSE 417
Algorithms
Winter 2006

Huffman Codes:
An Optimal Data Compression Method

Compression Example

100k file, 6 letter alphabet:

- File Size:
 - ASCII, 8 bits/char: 800kbits
 - $2^3 > 6$: 3 bits/char: 300kbits
 - 00,01,10 for a,b,d; 11xx for c,e,f:
 2.52 bits/char $\approx 74\% + 26\% \times 4$: 252kbits
 - Optimal?
- Why?
 - Storage, transmission vs 1Ghz cpu

Data Compression

- Binary character code ("code")
 - each k-bit source string maps to unique code word (e.g. k=8)
 - "compression" alg: concatenate code words for successive k-bit "characters" of source
- Fixed/variable length codes
 - all code words equal length?
- Prefix codes
 - no code word is prefix of another (simplifies decoding)

Prefix Codes = Trees

```
1 0 1 0 0 0 0 1
1 1 0 0 0 1 0 1
f a b
```

```
1 1 0 0 0 1 0 1
```

```
1 0 1 0 0 0 0 1
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
Greedy Idea #1
- Put most frequent under root, then recurse ...

Greedy Idea #1
- Put most frequent under root, then recurse
 - Too greedy: unbalanced tree
 \[0.45 \times 1 + 0.16 \times 2 + 0.13 \times 3 \ldots = 2.34\]
 not too bad, but imagine if all freqs were \(\sim 1/6\):
 \[
 (1 + 2 + 3 + 4 + 5 + 5)/6 = 3.33
 \]

Greedy Idea #2
- Divide letters into 2 groups, with \(\sim 50\%\) weight in each; recurse
 (Shannon-Fano code)
- Again, not terrible
 \(2 \times 0.5 + 3 \times 0.5 = 2.5\)
- But this tree can easily be improved! (How?)

Greedy Idea #3
- Group least frequent letters near bottom
Huffman’s Algorithm (1952)

Algorithm:
- insert node for each letter into priority queue by freq
- while queue length > 1 do
 - remove smallest 2; call them x, y
 - make new node z from them, with f(z) = f(x)+f(y)
 - insert z into queue

Analysis: \(O(n) \) heap ops: \(O(n \log n) \)

Goal: Minimize \(B(T) = \sum_{c \in C} freq(c) \times \text{depth}(c) \)

Correctness: ???

Correctness Strategy
- Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.
- Instead, show that greedy’s solution is as good as any.
Defn: A pair of leaves is an inversion if
\[\text{depth}(x) \geq \text{depth}(y) \]
and
\[\text{freq}(x) \geq \text{freq}(y) \]

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

before after
I.e. non-negative cost savings.

Let (C, f) be a problem instance: C an n-letter alphabet with letter frequencies f(c) for c \in C.
For any x, y in C, let C' be the (n-1) letter alphabet C - \{x, y\} \cup \{z\} and for all c in C' define
\[
f'(c) = \begin{cases}
 f(c), & \text{if } c \neq x, y, z \\
 f(x) + f(y), & \text{if } c = z
\end{cases}
\]

Let T' be an optimal tree for (C', f').
Then
\[
\text{is optimal for (C, f)} \quad \text{among all trees having } x, y \text{ as siblings}
\]

Lemma 1:

"Greedy Choice Property"

The 2 least frequent letters might as well be siblings at deepest level
- Let a be least freq, b 2\text{nd}
- Let u, v be siblings at max depth, f(u) \leq f(v) (why must they exist?)
- Then (a,u) and (b,v) are inversions. Swap them.

Proof:

\[
B(T) = \sum_{c \in C} d_r(c) \cdot f(c) \\
B(T) - B(T') = d_r(x) \cdot (f(x) + f(y)) - d_r(z) \cdot f'(z) \\
= (d_r(z) + 1) \cdot f'(z) - d_r(z) \cdot f'(z) \\
= f'(z)
\]

Suppose \(\hat{T} \) (having x & y as siblings) is better than T, i.e.
\[B(\hat{T}) < B(T) \]
Collapse x & y to z, forming \(\hat{T}' \) ; as above:
\[B(\hat{T}) - B(\hat{T}') = f'(z) \]
Then:
\[B(\hat{T}') = B(\hat{T}) - f'(z) < B(T) - f'(z) = B(T') \]
Contradicting optimality of T'
Theorem:
Huffman gives optimal codes

Proof: induction on |C|
- Basis: n=1,2 → immediate
- Induction: n>2
 - Let x,y be least frequent
 - Form C’, f’, & z, as above
 - By induction, T’ is opt for (C’,f’)
 - By lemma 2, T’→T is opt for (C,f) among trees with x,y as siblings
 - By lemma 1, some opt tree has x, y as siblings
 - Therefore, T is optimal.

Data Compression
- Huffman is optimal.
- BUT still might do better!
 - Huffman encodes fixed length blocks. What if we vary them?
 - Huffman uses one encoding throughout a file. What if characteristics change?
 - What if data has structure? E.g. raster images, video,…
 - Huffman is lossless. Necessary?
- LZW, MPEG, …

David A. Huffman, 1925-1999