Interval Scheduling

Interval scheduling.
- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum subset of mutually compatible jobs.

Greedy template. Consider jobs in some order. Take each job provided it’s compatible with the ones already taken.
- What order? Does that give best answer? Why or why not? Does it help to be greedy about order?
Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it’s compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_j.
- [Earliest finish time] Consider jobs in ascending order of finish time f_j.
- [Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.
- [Fewest conflicts] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.

Interval Scheduling: Greedy Algorithms

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it’s compatible with the ones already taken.

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

jobs selected

$A \leftarrow \emptyset$

for $j = 1$ to n

if (job j compatible with A)

$A \leftarrow A \cup \{j\}$

end if

end for

return A

Implementation. $O(n \log n)$.

- Remember job j^* that was added last to A.
- Job j is compatible with A if $s_j \leq f_{j^*}$.
Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)
1. Assume greedy is not optimal, and let's see what happens.
2. Let \(i_1, i_2, \ldots, i_k \) denote set of jobs selected by greedy.
3. Let \(j_1, j_2, \ldots, j_m \) denote set of jobs in the optimal solution with \(i_1 = j_1, i_2 = j_2, \ldots, i_r = j_r \) for the largest possible value of \(r \).

Greedy:

- \(i_1 \)
- \(i_2 \)
- \(\ldots \)
- \(i_k \)

OPT:

- \(j_1 \)
- \(j_2 \)
- \(\ldots \)
- \(j_m \)

job \(i_r \) finishes before \(j_{r+1} \).

why not replace job \(j_{r+1} \) with job \(i_{r+1} \)?

4.1 Interval Partitioning

Interval partitioning.
1. Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \).
2. Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.
Interval Partitioning as Interval Graph Coloring

Vertices = classes; edges = conflicting class pairs; different colors = different assigned rooms

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are a much simpler special case.

Interval Partitioning

Interval partitioning:
- Lecture \(j \) starts at \(s_j \) and finishes at \(f_j \).
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \(\geq \) depth.

Ex: Depth of schedule below = 3 \(\Rightarrow \) schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time; assign lecture to any compatible classroom.

Implementation?

Sort intervals by starting time so that \(s_1 \leq s_2 \leq \ldots \leq s_n \).

\(d = 0 \) — number of allocated classrooms

\(d \leftarrow d + 1 \)

Implementation? Run-time? Next HW
Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf.

- Let $d =$ number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all $d-1$ other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_j.
- Thus, we have d lectures overlapping at time $s_j + \varepsilon$, i.e. depth $\geq d$.
- "Key observation" \Rightarrow all schedules use \geq depth classrooms, so $d =$ depth and greedy is optimal.

Interval Partitioning: Alt Proof (exchange argument)

When 4th room added, rm_1 was free; why not swap it in there?
(A: it conflicts with later stuff in schedule, which dominoes)

But: rm_4 schedule after 11:00 is conflict-free; so is rm_1 schedule, so could swap both post-11:00 schedules

Why does it help? Delays needing 4th room; repeat.
Cleaner: "Let S^* be an opt sched with latest use of last room; ... swap; ... contradiction"

4.2 Scheduling to Minimize Lateness

Minimizing lateness problem.
- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$.
- Lateness: $l_j = \max (0, f_j - d_j)$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max l_j$.

Ex:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d_j</th>
<th>9</th>
<th>8</th>
<th>15</th>
<th>6</th>
<th>14</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>lateness = 2</td>
<td>lateness = 0</td>
<td>max lateness = 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first]
 Consider jobs in ascending order of processing time \(t_j \).

- [Earliest deadline first]
 Consider jobs in ascending order of deadline \(d_j \).

- [Smallest slack]
 Consider jobs in ascending order of slack \(d_j - t_j \).

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

Sort \(n \) jobs by deadline so that \(d_1 \leq d_2 \leq \ldots \leq d_n \).

\[t \leftarrow 0 \]

\[\text{for } j = 1 \text{ to } n \]

Assign job \(j \) to interval \([t, t + t_j]\)

\[s_j \leftarrow t, f_j \leftarrow t + t_j \]

\[t \leftarrow t + t_j \]

Output intervals \([s_j, f_j]\)

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first]
 Consider jobs in ascending order of processing time \(t_j \).

- [Earliest deadline first]
 Consider jobs in ascending order of deadline \(d_j \).

- [Smallest slack]
 Consider jobs in ascending order of slack \(d_j - t_j \).

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.
Minimizing Lateness: Inversions

Def. An **inversion** in schedule S is a pair of jobs i and j such that: deadline $i < j$ but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let l be the lateness before the swap, and let l' be it afterwards.

- $l'_k = l_k$ for all $k \neq i, j$
- $l'_i \leq l_i$
- If job j is now late:

 $l'_j = l_j - (j$ finishes at time f_i)
 $= f_i - d_j$ (definition)
 $\leq f_i - d_i$ ($i < j$, so $d_i < d_j$)
 $\leq l_i$ (definition)

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S^* to be an optimal schedule that has the fewest number of inversions, and let’s see what happens.

- Can assume S^* has no idle time.
- If S^* has no inversions, then $S = S^*$.
- If S^* has an inversion, let $i - j$ be an adjacent inversion.
 - Swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions.
 - This contradicts definition of S^*.

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm’s.

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.
4.3 Optimal Caching

- Cache with capacity to store k items.
- Sequence of m item requests d_1, d_2, \ldots, d_m.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested; must bring requested item into cache, and evict some existing item, if full.

Goal: Eviction schedule that minimizes number of cache misses.

Ex: $k = 2$, initial cache = ab, requests: a, b, c, b, c, a, a, b.
Optimal eviction schedule: 2 cache misses.

4.4 Shortest Paths in a Graph

You’ve seen this in 373, so this section and next two on min spanning tree are review. I won’t lecture on them, but you should review the material. Both, but especially shortest paths, are common problems with many applications.
Shortest Path Problem

Shortest path network:
- Directed graph $G = (V, E)$.
- Source s, destination t.
- Length l_e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t = $9 + 23 + 2 + 16 = 48$.

Dijkstra’s Algorithm

Dijkstra’s algorithm.
- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{s\}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{u \in S, e \in E} d(u) + l_e
$$

add v to S, and set $d(v) = \pi(v)$.

Dijkstra’s Algorithm

Dijkstra’s algorithm.
- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{s\}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{u \in S, e \in E} d(u) + l_e
$$

add v to S, and set $d(v) = \pi(v)$.

Coin Changing

Greed is good. Greed is right. Greed works.
Greed clarifies, cuts through, and captures the essence of the evolutionary spirit.
- Gordon Gekko (Michael Douglas)
Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

Ex: 34¢.

Cashier’s algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: $2.89.

Coin-Changing: Greedy Algorithm

Cashier’s algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Q. Is cashier’s algorithm optimal?

Sort coins denominations by value: \(c_1 < c_2 < \ldots < c_n\).

```java
coins selected
S ← ∅
while (x ≠ 0) {
    let k be largest integer such that \(c_k ≤ x\)
    if (k = 0)
        return "no solution found"
    x ← x - c_k
    S ← S ∪ {k}
}
return S
```

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greedy is optimal for U.S. coinage: 1, 5, 10, 25, 100.

Pf. (by induction on \(x\))

- Consider optimal way to change \(c_k = x < c_{k+1}\): greedy takes coin \(k\).
- We claim that any optimal solution must also take coin \(k\).
 - If not, it needs enough coins of type \(c_1, \ldots, c_{k-1}\) to add up to \(x\).
 - Table below indicates no optimal solution can do this.
- Problem reduces to coin-changing \(x - c_k\) cents, which, by induction, is optimally solved by greedy algorithm.

<table>
<thead>
<tr>
<th>(k)</th>
<th>(c_k)</th>
<th>All optimal solutions must satisfy</th>
<th>Max value of coins 1, 2, ..., (k) in any OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(P ≤ 4)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>(N ≤ 1)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>(N + D ≤ 2)</td>
<td>(4 + 5 = 9)</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>(Q ≤ 3)</td>
<td>(20 + 4 = 24)</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>no limit</td>
<td>(75 + 24 = 99)</td>
</tr>
</tbody>
</table>

Coin-Changing: Analysis of Greedy Algorithm

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

- Greedy: 100, 34, 1, 1, 1, 1, 1.
- Optimal: 70, 70.