Kevin Kline was in "French Kiss" with Meg Ryan

Meg Ryan was in "Sleepless in Seattle" with Tom Hanks

Tom Hanks was in "Apollo 13" with Kevin Bacon
Objects & Relationships

- The Kevin Bacon Game:
 - Actors
 - Two are related if they’ve been in a movie together

- Exam Scheduling:
 - Classes
 - Two are related if they have students in common

- Traveling Salesperson Problem:
 - Cities
 - Two are related if can travel \textit{directly} between them
Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: “vertices”, aka “nodes”
- Relationships between pairs: “edges”, aka “arcs”
- Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges
Undirected Graph \[G = (V,E) \]
Undirected Graph \(G = (V, E) \)
Undirected Graph $G = (V,E)$
Undirected Graph $G = (V,E)$
Undirected Graph \(G = (V, E) \)
Graphs don’t live in Flatland

- Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.
Directed Graph $G = (V,E)$
Specifying undirected graphs as input

- **What are the vertices?**
 - Explicitly list them:
 \{“A”, “7”, “3”, “4”\}

- **What are the edges?**
 - Either, set of edges
 \{\{A,3\}, \{7,4\}, \{4,3\}, \{4,A\}\}
 - Or, (symmetric) adjacency matrix:
Specifying directed graphs as input

- What are the vertices
 - Explicitly list them: \{“A”, “7”, “3”, “4”\}

- What are the edges
 - Either, set of directed edges: \{(A,4), (4,7), (4,3), (4,A), (A,3)\}
 - Or, (nonsymmetric) adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>7</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Let \(G \) be an undirected graph with \(n \) vertices and \(m \) edges.

How are \(n \) and \(m \) related?

Since

- every edge connects two \textit{different} vertices (no loops), and
- no two edges connect the \textit{same} two vertices (no multi-edges),

it must be true that: \[0 \leq m \leq n(n-1)/2 = O(n^2) \]
More Cool Graph Lingo

- A graph is called \textit{sparse} if \(m << n^2 \), otherwise it is \textit{dense}
 - Boundary is somewhat fuzzy; \(O(n) \) edges is certainly sparse, \(\Omega(n^2) \) edges is dense.
- Sparse graphs are common in practice
 - E.g., all planar graphs are sparse
- Q: which is a better run time, \(O(n+m) \) or \(O(n^2) \)?

 A: \(O(n+m) = O(n^2) \), but \(n+m \) usually way better!
Representing Graph $G = (V,E)$

- **Vertex set** $V = \{v_1, \ldots, v_n\}$
- **Adjacency Matrix** A
 - $A[i,j] = 1$ iff $(v_i,v_j) \in E$
 - Space is n^2 bits

Advantages:
- $O(1)$ test for presence or absence of edges.

Disadvantages: inefficient for sparse graphs, both in storage and access

$$
\begin{array}{c|cccc}
 & A & 7 & 3 & 4 \\
\hline
 A & 0 & 0 & 1 & 1 \\
 7 & 0 & 0 & 0 & 1 \\
 3 & 1 & 0 & 0 & 1 \\
 4 & 1 & 1 & 1 & 0 \\
\end{array}
$$

$\text{m} << n^2$
Representing Graph $G=(V,E)$

- Adjacency List:
 - $O(n+m)$ words
- Advantages:
 - Compact for sparse graphs
 - Easily see all edges
- Disadvantages
 - More complex data structure
 - no $O(1)$ edge test
Representing Graph \(G=(V,E) \)

- **Adjacency List:**
 - \(O(n+m) \) words

- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, *if needed*, (don’t bother if not)
Graph Traversal

- Learn the basic structure of a graph
- “Walk,” via edges, from a fixed starting vertex \(v \) to all vertices reachable from \(v \)

- Three states of vertices
 - undiscovered
 - discovered
 - fully-explored
Breadth-First Search

- Completely explore the vertices in order of their distance from v

- Naturally implemented using a queue
BFS(v)

Global initialization: mark all vertices "undiscovered"

BFS(v)

mark v "discovered"

queue = v

while queue not empty

u = remove_first(queue)

for each edge \{u,x\}

if (x is undiscovered)

mark x discovered

append x on queue

mark u completed

Exercise: modify code to number vertices & compute level numbers
BFS(v)
BFS(v)
BFS(v)

Queue: 2 3
BFS(v)

Queue: 3 4
BFS(\(v\))
BFS(v)

Queue: 5 6 7 8 9
BFS(v)

Queue: 8 9 10 11
BFS(v)

Queue: 10 11 12 13
BFS(v)
BFS analysis

- Each edge is explored once from each end-point (at most)

- Each vertex is discovered by following a different edge

- Total cost $O(m)$ where m=# of edges
Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G.
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels.
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex

can label by distances from start
all edges connect same/adjacent levels
Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs on graphs
- So, this is often a good way to approach a graph problem: find a “nice” tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure...
Graph Search Application: Connected Components

- Want to answer questions of the form:
 - given vertices u and v, is there a path from u to v?

- Idea: create array A such that

 \[A[u] = \text{smallest numbered vertex that is connected to } u \]

Q: Why not create 2-d array $\text{Path}[u,v]$?
Graph Search Application: Connected Components

- initial state: all v undiscovered

 \begin{verbatim}
 for $v=1$ to n do
 if state(v) \neq fully-explored then
 BFS(v): setting $A[u] \leftarrow v$ for each u found
 (and marking u discovered/fully-explored)
 endif
 endfor
 \end{verbatim}

- Total cost: $O(n+m)$

 - each edge is touched a constant number of times
 - works also with DFS
Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack