Objects & Relationships

- The Kevin Bacon Game:
 - Actors
 - Two are related if they've been in a movie together
- Exam Scheduling:
 - Classes
 - Two are related if they have students in common
- Traveling Salesperson Problem:
 - Cities
 - Two are related if can travel directly between them

Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: “vertices”, aka “nodes”
- Relationships between pairs: “edges”, aka “arcs”
- Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges
Undirected Graph \(G = (V,E) \)

Undirected Graph \(G = (V,E) \)

Undirected Graph \(G = (V,E) \)

Undirected Graph \(G = (V,E) \)
Undirected Graph $G = (V,E)$

Directed Graph $G = (V,E)$

Graphs don’t live in Flatland

- Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.
Directed Graph $G = (V, E)$

Specifying undirected graphs as input

- What are the vertices?
 - Explicitly list them:
 - \{“A”, “7”, “3”, “4”\}
 - Or, (symmetric) adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>7</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- What are the edges?
 - Either, set of edges
 - \{A,3\}, \{7,4\}, \{4,3\}, \{4,A\}
 - Or, (symmetric) adjacency matrix:
More Cool Graph Lingo

- A graph is called **sparse** if \(m \ll n^2 \), otherwise it is **dense**.
 - Boundary is somewhat fuzzy; \(O(n) \) edges is certainly sparse, \(\Omega(n^2) \) edges is dense.
- Sparse graphs are common in practice
 - E.g., all planar graphs are sparse
- Q: which is a better run time, \(O(n+m) \) or \(O(n^2) \)?
 - A: \(O(n+m) = O(n^2) \), but \(n+m \) usually way better!

Vertices vs # Edges

- Let \(G \) be an undirected graph with \(n \) vertices and \(m \) edges
- How are \(n \) and \(m \) related?
- Since
 - every edge connects two different vertices (no loops), and
 - no two edges connect the same two vertices (no multi-edges),
- it must be true that: \(0 \leq m \leq \frac{n(n-1)}{2} = O(n^2) \)

Representing Graph \(G = (V,E) \)

- Vertex set \(V = \{v_1, \ldots, v_n\} \)
- Adjacency Matrix \(A \)
 - \(A[i,j] = 1 \) iff \((v_i,v_j) \in E \)
 - Space is \(n^2 \) bits
- Advantages:
 - \(O(1) \) test for presence or absence of edges.
- Disadvantages: inefficient for sparse graphs, both in storage and access
Representing Graph $G=(V,E)$
n vertices, m edges

- **Adjacency List:**
 - $O(n+m)$ words

- **Advantages:**
 - Compact for sparse graphs
 - Easily see all edges

- **Disadvantages**
 - More complex data structure
 - no $O(1)$ edge test

Graph Traversal

- Learn the basic structure of a graph
- "Walk," via edges, from a fixed starting vertex v to all vertices reachable from v

- Three states of vertices
 - undiscovered
 - discovered
 - fully-explored

Breadth-First Search

- Completely explore the vertices in order of their distance from v

- Naturally implemented using a queue
BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)
 mark v "discovered"
 queue = v
 while queue not empty
 u = remove_first(queue)
 for each edge {u,x}
 if (x is undiscovered)
 mark x discovered
 append x on queue
 mark u completed

Exercise: modify code to number vertices & compute level numbers
BFS(v)

Queue: 4 5 6 7

Queue: 5 6 7 8 9

Queue: 8 9 10 11

Queue: 10 11 12 13
BFS(v)

Queue:

Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G.
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels.

BFS analysis

- Each edge is explored once from each end-point (at most).
- Each vertex is discovered by following a different edge.
- Total cost $O(m)$ where m= # of edges.

BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start. All edges connect same/adjacent levels.
Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs on graphs
- So, this is often a good way to approach a graph problem: find a “nice” tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure…

Graph Search Application: Connected Components

- Want to answer questions of the form:
 - given vertices u and v, is there a path from u to v?

Q: Why not create 2-d array Path[u,v]?

Idea: create array A such that
- \(A[u] = \text{smallest numbered vertex that is connected to } u \)

Graph Search Application: Connected Components

- initial state: all \(v \) undiscovered

 for \(v=1 \) **to** \(n \) **do**

 if state(\(v \)) != fully-explored **then**

 BFS(\(v \)): setting \(A[u] \leftarrow v \) for each \(u \) found

 (and marking \(u \) discovered/fully-explored)

 endif

 endfor

- Total cost: \(O(n+m) \)
 - each edge is touched a constant number of times
 - works also with DFS

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can

- Naturally implemented using recursive calls or a stack