Measuring efficiency: The RAM model

- RAM = Random Access Machine
- Time \approx # of instructions executed in an ideal assembly language
 - each simple operation (+, *, -, =, if, call) takes one time step
 - each memory access takes one time step
- No bound on the memory size

Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of “efficiency” that is
 - Simple
 - Relatively independent of changing technology
 - But still useful for prediction - “theoretically bad” algorithms should be bad in practice and vice versa
 (usually)

We left out things but...

- Things we’ve dropped
 - memory hierarchy
 - disk, caches, registers have many orders of magnitude differences in access time
 - not all instructions take the same time in practice
- However,
 - the RAM model is useful for designing algorithms and measuring their efficiency
 - one can usually tune implementations so that the hierarchy etc. is not a huge factor
Complexity analysis

- Problem size n
 - **Worst-case complexity**: max # steps algorithm takes on any input of size n
 - **Best-case complexity**: min # steps algorithm takes on any input of size n
 - **Average-case complexity**: avg # steps algorithm takes on inputs of size n

Pros and cons:

- Best-case
 - unrealistic overselling
 - can “cheat”: tune algorithm for one easy input
- Worst-case
 - a fast algorithm has a comforting guarantee
 - no way to cheat by hard-coding special cases
 - maybe too pessimistic
- Average-case
 - over what probability distribution? (different people may have different “average” problems)
 - analysis hard

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions…

General Goals

- Characterize growth rate of run time as a function of problem size, up to a constant factor
- Why not try to be more precise?
 - Technological variations (computer, compiler, OS, …) easily 10x or more
 - Being more precise is a ton of work
 - A key question is “scale up”: if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: cn^2, next year: $c(2n)^2 = 4cn^2$: 4 x longer.)
Complexity

• The complexity of an algorithm associates a number $T(n)$, the best/worst/average-case time the algorithm takes, with each problem size n.

• Mathematically,
 – $T: N^+ \rightarrow R^+$
 – that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

O-notation etc

• Given two functions f and $g: N \rightarrow R$
 – $f(n)$ is $O(g(n))$ iff there is a constant $c > 0$ so that $f(n)$ is eventually always $\leq cg(n)$
 – $f(n)$ is $\Omega(g(n))$ iff there is a constant $c > 0$ so that $f(n)$ is eventually always $\geq cg(n)$
 – $f(n)$ is $\Theta(g(n))$ iff there is are constants c_1 and $c_2 > 0$ so that eventually always $c_1g(n) \leq f(n) \leq c_2g(n)$
Examples

- $10n^2-16n+100$ is $O(n^2)$ also $O(n^3)$
 - $10n^2-16n+100 \leq 11n^2$ for all $n \geq 10$
- $10n^2-16n+100$ is $\Omega(n^2)$ also $\Omega(n)$
 - $10n^2-16n+100 \geq 9n^2$ for all $n \geq 16$
 - Therefore also $10n^2-16n+100$ is $\Theta(n^2)$
- $10n^2-16n+100$ is not $O(n)$ also not $\Omega(n^3)$

Properties

- Transitivity.
 - If $f = O(g)$ and $g = O(h)$ then $f = O(h)$.
 - If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
 - If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

- Additivity.
 - If $f = O(h)$ and $g = O(h)$ then $f + g = O(h)$.
 - If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
 - If $f = \Theta(h)$ and $g = O(h)$ then $f + g = \Theta(h)$.

Asymptotic Bounds for Some Common Functions

- Polynomials:
 - $a_0 + a_1n + \ldots + a_dn^d$ is $\Theta(n^d)$ if $a_d > 0$

- Logarithms:
 - $O(\log_a n) = O(\log_b n)$ for any constants $a, b > 0$

- Logarithms:
 - For all $x > 0$, $\log n = O(n^x)$

“One-Way Equalities”

- “$2 + 2$ is 4” vs $2 + 2 = 4$ vs $4 = 2 + 2$
- “Every dog is a mammal” vs “Every mammal is a dog”
- $2n^2 + 5n$ is $O(n^3)$ vs $2n^2 + 5n = O(n^3)$ vs $O(n^3) = 2n^2 + 5n$
 - FALSE
- OK to put big-O in R.H.S. of equality, but not left. Better notation: $T(n) \in O(f(n))$.
Working with O-Ω-Θ notation

Claim: For any a, and any $b > 0$, $(n+a)^b$ is $\Theta(n^b)$

- $(n+a)^b \leq (2n)^b$ for $n \geq |a|
 = 2^b n^b
 = c n^b$ for $c = 2^b$
 so $(n+a)^b$ is $O(n^b)$

- $(n+a)^b \geq (n/2)^b$ for $n \geq 2|a|$ (even if $a < 0$
 = $2^{-b} n^b$
 = $c'n^b$ for $c' = 2^{-b}$
 so $(n+a)^b$ is $\Omega(n^b)$

Working with O-Ω-Θ notation

Claim: For any a, $b > 1$ $\log_a n$ is $\Theta(\log_b n)$

$log_a b = x$ means $a^x = b$
$a^{\log_a b} = b$
$(a^{\log_a b})^{\log_b n} = b^{\log_b n} = n$
$(\log_a b)(\log_b n) = \log_a n$
c $\log_b n = \log_a n$ for the constant $c = \log_a b$
So:
$\log_b n = \Theta(\log_a n) = \Theta(\log n)$

Domination

- $f(n)$ is $o(g(n))$ iff $\lim_{n \to \infty} f(n)/g(n) = 0$
 - that is $g(n)$ dominates $f(n)$

- If $\alpha \leq \beta$ then n^α is $O(n^\beta)$

- If $\alpha < \beta$ then n^α is $o(n^\beta)$

- Note:
 if $f(n)$ is $\Theta(g(n))$ then it cannot be $o(g(n))$

Working with little-o

- $n^2 = o(n^3)$ [Use algebra]:
 \[
 \lim_{n \to \infty} \frac{n^2}{n^3} = \lim_{n \to \infty} \frac{1}{n} = 0
 \]

- $n^3 = o(e^n)$ [Use L’Hospital’s rule 3 times]:
 \[
 \lim_{n \to \infty} \frac{n^3}{e^n} = \lim_{n \to \infty} \frac{3n^2}{e^n} = \lim_{n \to \infty} \frac{6n}{e^n} = \lim_{n \to \infty} \frac{6}{e^n} = 0
 \]
Big-Theta, etc. not always “nice”

\[f(n) = \begin{cases}
 n^2, & \text{if } n \text{ even} \\
 n, & \text{if } n \text{ odd}
\end{cases} \]

\[f(n) \neq \Theta(n^a) \text{ for any } a. \]

Fortunately, such nasty cases are rare

\[f(n \log n) \neq \Theta(n^a) \text{ for any } a, \text{ either, but at least it's simpler.} \]

A Possible Misunderstanding?

- We have looked at
 - type of complexity analysis
 - worst-, best-, average-case
 - types of function bounds
 - \(O, \Omega, \Theta\)

- These two considerations are independent of each other
 - one can do any type of function bound with any type of complexity analysis

Asymptotic Bounds for Some Common Functions

- Exponentials.
 - For all \(r > 1\) and all \(d > 0\), \(n^d = O(r^n)\).

 every exponential grows faster than every polynomial

Polynomial time

- Running time is \(O(n^d)\) for some constant \(d\) independent of the input size \(n\).
Why It Matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{12} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>30</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>18 min</td>
</tr>
<tr>
<td>50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
</tr>
<tr>
<td>100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
</tr>
<tr>
<td>1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
</tr>
<tr>
<td>10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
</tr>
<tr>
<td>100,000</td>
<td>< 1 sec</td>
<td>2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
</tr>
</tbody>
</table>

Geek-speak Faux Pas du Jour

- “Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons.”
 - Statement doesn't "type-check."
 - Use Ω for lower bounds.