Some Algebra Problems (Algorithmic)

Given positive integers a, b, c

Question 1: does there exist a positive integer x such that \(ax = c\) ?

Question 2: does there exist a positive integer x such that \(ax^2 + bx = c\) ?

Question 3: do there exist positive integers x and y such that \(ax^2 + by = c\) ?

The Clique Problem

Given: a graph \(G=(V,E)\) and an integer k

Question: is there a subset \(U\) of \(V\) with \(|U| \geq k\) such that every pair of vertices in \(U\) is joined by an edge.

Solving The Clique Problem

- A simple way:
 - Systematically list all possible sets of exactly k nodes
 - For each such set, check whether all pairs are neighbors

- A general approach for problems like this: Backtracking
Backtracking (abstractly)

• Want: a vector \((a_1, a_2, \ldots, a_q)\) satisfying some property \(P\), e.g. "\(a_1..a_q\) is a \(q\)-clique".

\[
\text{BT}(A,j)
\]

if \(A, j\) satisfies \(P\), report it
else
\[
j = j+1
\]

let \(S_j\) be the set of "candidates" for slot \(j\);
for each \(a_j\) in \(S_j\)
\[
\text{BT}(A \cdot a_j, j)
\]

Top Level: Call \(\text{BT}(\text{empty},0)\); report "no solution" if it found none.

Backtracking for \(k\)-Clique, I

• Want: a vector \((a_1, a_2, \ldots, a_q)\) satisfying some property \(P\), e.g. "\(a_1..a_q\) is a \(q\)-clique".

\[
\text{BT}(A,j)
\]

if \(A, j\) satisfies \(P\), report it
else
\[
j = j+1
\]

let \(S_j\) be the set of "candidates" for slot \(j\);
for each \(a_j\) in \(S_j\)
\[
\text{BT}(A \cdot a_j, j)
\]

Top Level: Call \(\text{BT}(\text{empty},0)\); report "no solution" if it found none.

Time: \(n^*{(n-1)^*\ldots(n-k+1)^*k^2}\)

Backtracking for \(k\)-Clique, II

• Want: a vector \((a_1, a_2, \ldots, a_q)\) satisfying some property \(P\), e.g. "\(a_1..a_q\) is a \(q\)-clique".

\[
\text{BT}(A,j)
\]

if \(A, j\) satisfies \(P\), report it
else
\[
j = j+1
\]

let \(S_j\) be the set of "candidates" for slot \(j\);
for each \(a_j\) in \(S_j\)
\[
\text{BT}(A \cdot a_j, j)
\]

Top Level: Call \(\text{BT}(\text{empty},0)\); report "no solution" if it found none.

Time: depends strongly on graph, but basically as bad in worst case.
Backtracking for k-Clique, II

More History

- 1930/40's
 - What is (is not) computable
- 1960/70's
 - What is (is not) feasibly computable
 - Goal — a (largely) technology independent theory of time required by algorithms
 - Key modeling assumptions/approximations
 - Asymptotic (Big-O), worst case is revealing
 - Polynomial, exponential time — qualitatively different

A Brief History of Ideas

- From Classical Greece, if not earlier, "logical thought" held to be a somewhat mystical ability
- Mid 1800's: Boolean Algebra and foundations of mathematical logic created possible "mechanical" underpinnings
- 1900: David Hilbert's famous speech outlines program: mechanize all of mathematics?
- 1930's: Gödel, Church, Turing, et al. prove it's impossible

Polynomial vs Exponential Growth
Next year’s computer will be 2x faster. If I can solve problem of size \(n_0 \) today, how large a problem can I solve in the same time next year?

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Increase</th>
<th>E.g. (T=10^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(n))</td>
<td>(n_0 \rightarrow 2n_0)</td>
<td>(10^{12})</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>(n_0 \rightarrow \sqrt{2}n_0)</td>
<td>(10^6)</td>
</tr>
<tr>
<td>(O(n^3))</td>
<td>(n_0 \rightarrow \sqrt[3]{2}n_0)</td>
<td>(10^4)</td>
</tr>
<tr>
<td>(2^{n/10})</td>
<td>(n_0 \rightarrow n_0+10)</td>
<td>(400)</td>
</tr>
<tr>
<td>(2^n)</td>
<td>(n_0 \rightarrow n_0+1)</td>
<td>(40)</td>
</tr>
</tbody>
</table>

We’ll say any algorithm whose run-time is
- polynomial is good
- bigger than polynomial is bad

Note – of course there are exceptions:
- \(n^{100} \) is bigger than \((1.001)^n\) for most practical values of \(n \) but usually such run-times don’t show up
- There are algorithms that have run-times like \(O(2^{n/22}) \) and these may be useful for small input sizes, but they’re not too common either

"Problem" – the general case
- Ex: The Clique Problem: Given a graph \(G \) and an integer \(k \), does \(G \) contain a \(k \)-clique?

"Problem Instance" – the specific cases
- Ex: Does \(G \) contain a 4-clique? (no)
- Ex: Does \(G \) contain a 3-clique? (yes)

Decision Problems – Just Yes/No answer
Problems as Sets of "Yes" Instances
- Ex: CLIQUE = \{ \((G,k) \mid \text{\(G \) contains a \(k \)-clique} \) \}
- E.g.: \((\{1,2,3\},4) \notin \text{CLIQUE} \)
- E.g.: \((\{1,2,3\},3) \in \text{CLIQUE} \)

Computational complexity usually analyzed using decision problems
- answer is just 1 or 0 (yes or no).

Why?
- much simpler to deal with
- deciding whether \(G \) has a \(k \)-clique, is certainly no harder than finding a \(k \)-clique in \(G \), so a lower bound on deciding is also a lower bound on finding
- Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does \(G \) still have a \(k \)-clique after I remove this vertex?)
The class P

Definition: P = set of (decision) problems solvable by computers in polynomial time.

i.e. $T(n) = O(n^k)$ for some fixed k.

• These problems are sometimes called **tractable** problems.

Examples: sorting, shortest path, MST, connectivity, biconnectivity, various dynamic programming — all of 417 up to now except Knapsack/Change-Making

Beyond P?

• There are many natural, practical problems for which we don’t know any polynomial-time algorithms

• e.g. CLIQUE:
 – Given a weighted graph G and an integer k, does there exist a k-clique in G?

• e.g. quadratic Diophantine equations:
 – Given $a, b, c \in \mathbb{N}$, $\exists x, y \in \mathbb{N}$ s.t. $ax^2 + by = c$?

Some Problems

• Independent-Set:
 – Given a graph $G=(V,E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that no two vertices in U are joined by an edge.

• Clique:
 – Given a graph $G=(V,E)$ and an integer k, is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.

Some More Problems

• Euler Tour:
 • Given a graph $G=(V,E)$ is there a cycle traversing each edge once.

• Hamilton Tour:
 • Given a graph $G=(V,E)$ is there a simple cycle of length $|V|$, i.e., traversing each vertex once.

• TSP:
 • Given a weighted graph $G=(V,E,w)$ and an integer k, is there a Hamilton tour of G with total weight $\leq k$.

Satisfiability

- **Boolean variables** x_1, \ldots, x_n
 - taking values in $\{0,1\}$: 0=false, 1=true
- **Literals**
 - x_i or $\neg x_i$ for $i=1,\ldots,n$
- **Clause**
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- **CNF formula**
 - a logical AND of a bunch of clauses

Satisfiability

- **CNF formula example**
 - $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12}) \land (x_2 \lor \neg x_4 \lor x_7 \lor x_5)$
- If there is some assignment of 0’s and 1’s to the variables that makes it true then we say the formula is **satisfiable**
 - the one above is, the following isn’t
 - $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$
- **Satisfiability**:
 - Given a CNF formula F, is it satisfiable?

More History – As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- *None* had poly time algorithms; exponential was best known
- But, it turns out they all have a very deep similarity under the skin

Some Problem Pairs

- Euler Tour
- 2-SAT
- Min Cut
- Shortest Path
- Hamilton Tour
- 3-SAT
- Max Cut
- Longest Path

Similar pairs; seemingly different computationally
Common property of these problems

- There is a special piece of information, a short hint or proof, that allows you to efficiently (in polynomial-time) verify that the YES answer is correct. This hint might be very hard to find.

- e.g.
 - TSP: the tour itself,
 - Independent-Set, Clique: the set U
 - Satisfiability: an assignment that makes F true.
 - Quadratic Diophantine eqns: the numbers x & y.

The complexity class NP

NP consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint.

And

- No hint can fool your polynomial time verifier into saying YES for a NO instance.
 - (implausible for all exponential time problems)

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure $v(.,.)$, and an integer k such that
 - for every YES problem instance x there is a hint h with $|h| \leq |x|^k$ such that $v(x,h) = \text{YES}$
 - for every NO problem instance x there is no hint h with $|h| \leq |x|^k$ such that $v(x,h) = \text{YES}$

- “Hints” sometimes called “Certificates”

Example: CLIQUE is in NP

procedure $v(x,h)$

if
 - x is a well-formed representation of a graph $G = (V,E)$ and an integer k,
 - h is a well-formed representation of a k-vertex subset U of V,
 - U is a clique in G,
then output "YES"
else output "I'm unconvinced"
Is it correct?

- For every $x = (G,k)$ such that G contains a k-clique, there is a hint h that will cause $v(x,h)$ to say YES, namely h = a list of the vertices in such a k-clique and
- No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if $x = (G,k)$ but G does not have any cliques of size k (the interesting case)

Another example: SAT \in NP

- Hint: the satisfying assignment A
- Verifier: $v(F,A) = \text{syntax}(F,A) \land \text{satisfies}(F,A)$
 - Syntax: True iff F is a well-formed formula & A is a truth-assignment to its variables
 - Satisfies: plug A into F and evaluate
- Correctness:
 - If F is satisfiable, it has some satisfying assignment A, and we'll recognize it
 - If F is unsatisfiable, it doesn't, and we won't be fooled

Keys to showing that a problem is in NP

- What's the output? (must be YES/NO)
- What's the input? Which are YES?
- For every given YES input, is there a hint that would help? Is it polynomial length?
 - OK if some inputs need no hint
- For any given NO input, is there a hint that would trick you?

Complexity Classes

- $NP = \text{Polynomial-time verifiable}$
- $P = \text{Polynomial-time solvable}$
Solving NP problems without hints

- The only obvious algorithm for most of these problems is brute force:
 - try all possible hints and check each one to see if it works.
 - Exponential time:
 - 2^n truth assignments for n variables
 - $n!$ possible TSP tours of n vertices
 - $\binom{n}{k}$ possible k element subsets of n vertices
 - etc.
 - ...and to date, even much less-obvious algs are slow, too

Problems in P can also be verified in polynomial-time

- Shortest Path: Given a graph G with edge lengths, is there a path from s to t of length $\leq k$?
- Verify: Given a purported path from s to t, is it a path, is its length $\leq k$?

- Small Spanning Tree: Given a weighted undirected graph G, is there a spanning tree of weight $\leq k$?
- Verify: Given a purported spanning tree, is it a spanning tree, is its weight $\leq k$?

P vs NP vs Exponential Time

- Theorem: Every problem in NP can be solved deterministically in exponential time
- Proof: “hints” are only n^k long; try all 2^{n^k} possibilities, say by backtracking. If any succeed, say YES; if all fail, say NO.

P and NP

- Every problem in P is in NP
 - one doesn’t even need a hint for problems in P so just ignore any hint you are given

- Every problem in NP is in exponential time
 - I.e., $P \subseteq NP \subseteq Exp$
 - We know $P \neq Exp$, so either $P \neq NP$, or $NP \neq Exp$ (most likely both)
P vs NP

- **Theory**
 - $P = NP$?
 - Open Problem!
 - I bet against it

- **Practice**
 - Many interesting, useful, natural, well-studied problems known to be NP-complete
 - With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

A problem NOT in NP; A bogus “proof” to the contrary

- $EEXP = \{(p,x) \mid \text{program } p \text{ accepts input } x \text{ in } < 2^{2^{\log_2 x}} \text{ steps}\}$

NON Theorem: $EEXP$ in NP

- “Proof” 1: Hint = step-by-step trace of the computation of p on x; verify step-by-step

More Connections

- **Some Examples in NP**
 - Satisfiability
 - Independent-Set
 - Clique
 - Vertex Cover

- All hard to solve; hints seem to help on all

- Very surprising fact:
 - Fast solution to *any* gives fast solution to *all*!

The class NP-complete

We are pretty sure that no problem in NP – P can be solved in polynomial time.

Non-Definition: NP-complete = the hardest problems in the class NP. (Formal definition later.)

Interesting fact: If any one NP-complete problem could be solved in polynomial time, then *all* NP problems could be solved in polynomial time.
Complexity Classes

- $\text{NP} = \text{Poly-time verifiable}$
- $\text{P} = \text{Poly-time solvable}$
- $\text{NP-Complete} = \text{“Hardest” problems in NP}$

The class NP-complete (cont.)

Thousands of important problems have been shown to be NP-complete.

Fact (Dogma): The general belief is that there is no efficient algorithm for any NP-complete problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover, Hamiltonian cycle, TSP, bin packing.

Complexity Classes of Problems

- $\text{NP} = \text{NP-Complete}$
- P

- SAT, clique, vertex cover, traveling salesman
- Sorting, MST, BCC, max flow

Does $P = \text{NP}$?

- This is an open question.
- To show that $P = NP$, we have to show that every problem that belongs to NP can be solved by a polynomial time deterministic algorithm.
- No one has shown this yet.
- (It seems unlikely to be true.)
Is all of this useful for anything?

Earlier in this class we learned techniques for solving problems in \(P \).

Question: Do we just throw up our hands if we come across a problem we suspect not to be in \(P \)?

Dealing with NP-complete Problems

What if I think my problem is not in \(P \)?

Here is what you might do:

1) Prove your problem is \(\text{NP-hard} \) or -complete (a common, but not guaranteed outcome)
2) Come up with an algorithm to solve the problem usually or approximately.

Reductions: a useful tool

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2)\(^{nd}\)

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.

Reductions: Why useful

Definition: To reduce A to B means to solve A, given a subroutine solving B.

Fast algorithm for B implies fast algorithm for A (nearly as fast; takes some time to set up call, etc.)

If every algorithm for A is slow, then no algorithm for B can be fast.

"complexity of A" ≤ "complexity of B" + "complexity of reduction"
The growth of the number of NP-complete problems

• Steve Cook (1971) showed that SAT was NP-complete.
• Richard Karp (1972) found 24 more NP-complete problems.
• Today there are thousands of known NP-complete problems.
 – Garey and Johnson (1979) is an excellent source of NP-complete problems.

SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF) is satisfiable if there exists a truth assignment of 0’s and 1’s to its variables such that the value of the expression is 1. Example:

\[S = (x + y + \neg z) \land (\neg x + y + z) \land (\neg x + y + \neg z) \]

Example above is satisfiable. (We can see this by setting x=1, y=1 and z=0.)

How do you prove problem \(A \) is NP-complete?

1) **Prove \(A \) is in NP:** show that given a solution, it can be verified in polynomial time.

2) **Prove that \(A \) is NP-hard:**
 a) Select a known NP-complete problem \(B \).
 b) Describe a polynomial time computable algorithm that computes a function \(f \), mapping every instance of \(B \) to an instance of \(A \). (that is: \(B \rightarrow A \))
 c) Prove that if \(b \) is a yes-instance of \(B \) then \(f(b) \) is a yes-instance of \(A \). Conversely, if \(f(b) \) is a yes-instance of \(A \), then \(b \) must be yes-instance of \(B \).
 d) Prove that the algorithm computing \(f \) runs in polynomial time.

NP-complete problem: Vertex Cover

Input: Undirected graph \(G = (V, E) \), integer \(k \).

Output: True if there is a subset \(C \) of \(V \) of size \(\leq k \) such that every edge in \(E \) is incident to at least one vertex in \(C \).

Example: Vertex cover of size \(\leq 2 \).

In NP? Exercise
3SAT \leq_p VertexCover

$3SAT \leq_p VertexCover$

$k=6$
\[(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3) \]

3SAT ≤_p VertexCover

\[f \]

3-SAT Instance:
- Variables: \(x_1, x_2, \ldots \)
- Literals: \(y_{ij}, 1 \leq i \leq q, 1 \leq j \leq 3 \)
- Clauses: \(c_i = y_{i1} \lor y_{i2} \lor y_{i3}, 1 \leq i \leq q \)
- Formula: \(c = c_1 \land c_2 \land \ldots \land c_q \)

VertexCover Instance:
- \(k = 2q \)
- \(G = (V, E) \)
- \(V = \{ [i,j] | 1 \leq i \leq q, 1 \leq j \leq 3 \} \)
- \(E = \{ ([i,j], [k,l]) | i = k \text { or } y_{ij} = \neg y_{kl} \} \)

Correctness of “3-SAT ≤_p VertexCover”

Summary of reduction function \(f \):
- Given formula, make graph \(G \) with one group per clause, one node per literal. Connect each to all nodes in same group, plus complementary literals \((x, \neg x)\). Output graph \(G \) plus integer \(k = 2^* \) number of clauses.
- \(f \) does not know whether formula is satisfiable or not; does not try to find satisfying assignment or cover.

Correctness:
1. Show \(f \) poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
2. Show \(c \) in 3-SAT iff \(f(c) = (G, k) \) in VertexCover:
 - \((\Rightarrow)\) Given an assignment satisfying \(c \), pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every \((x, \neg x)\) edge is covered.
 - \((\Leftarrow)\) Given a \(k \)-vertex cover in \(G \), uncovered labels define a valid (perhaps partial) truth assignment since no \((x, \neg x)\) pair uncovered. It satisfies \(c \) since there is one uncovered node in each clause triangle (else some other clause triangle has > 1 uncovered node, hence an uncovered edge.)
Utility of “3-SAT \(\leq_p \) VertexCover”

- Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:
 - Given 3-CNF formula \(w \), build VertexCover instance \(y = f(w) \) as above, run the fast VC alg on \(y \); say “YES, \(w \) is satisfiable” if VC alg says “YES, \(y \) has a vertex cover of the given size”
- On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

Polynomial-Time Reductions

Definition: Let \(A \) and \(B \) be two problems. We say that \(A \) is polynomially reducible to \(B \) if there exists a polynomial-time algorithm \(f \) that converts each instance \(x \) of problem \(A \) to an instance \(f(x) \) of \(B \) such that \(x \) is a YES instance of \(A \) iff \(f(x) \) is a YES instance of \(B \).

\[
x \in A \iff f(x) \in B
\]

“3-SAT \(\leq_p \) VertexCover” Retrospective

- Previous slide: two suppositions
- Somewhat clumsy to have to state things that way.
- Alternative: abstract out the key elements, give it a name (“polynomial time reduction”), then properties like the above always hold.

Polynomial-Time Reductions (cont.)

Define: \(A \leq_p B \) “\(A \) is polynomial-time reducible to \(B \)”, iff there is a polynomial-time computable function \(f \) such that:

\[
x \in A \iff f(x) \in B
\]

- Why the notation?
 - “complexity of \(A \)” ≤ “complexity of \(B \)” + “complexity of \(f \)”

- (1) \(A \leq_p B \) and \(B \in P \) \(\Rightarrow \) \(A \in P \)
- (2) \(A \leq_p B \) and \(A \notin P \) \(\Rightarrow \) \(B \notin P \)
- (3) \(A \leq_p B \) and \(B \leq_p C \) \(\Rightarrow \) \(A \leq_p C \) (transitivity)
Using an Algorithm for B to Decide A

Algorithm to decide A

\[x \quad \text{Algorithm to compute } f \quad f(x) \quad \text{Algorithm to decide } B \quad f(x) \in B? \quad x \in A? \]

“If $A \preceq B$, and we can solve B in polynomial time, then we can solve A in polynomial time also.”

Ex: suppose f takes $O(n^3)$ and algorithm for B takes $O(n^2)$. How long does the above algorithm for A take?

Definition of NP-Completeness

Definition: Problem B is **NP-hard** if every problem in NP is polynomially reducible to B.

Definition: Problem B is **NP-complete** if:

1. B belongs to NP, and
2. B is NP-hard.

Proving a problem is NP-complete

• Technically, for condition (2) we have to show that every problem in NP is reducible to B. (yikes!) This sounds like a lot of work.
• For the very first NP-complete problem (SAT) this had to be proved directly.
• However, once we have one NP-complete problem, then we don’t have to do this every time.
• Why? Transitivity.

Re-stated Definition

Lemma: Problem B is **NP-complete** if:

1. B belongs to NP, and
2. There is some polynomial-time reducible to B, for some problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is sufficient to show that SAT or any other NP-complete problem is polynomial-time reducible to B.
Usefulness of Transitivity

Now we only have to show $L' \leq_p L$, for some problem $L' \in \text{NP-complete}$, in order to show that L is NP-hard. Why is this equivalent?

1) Since $L' \in \text{NP-complete}$, we know that L' is NP-hard. That is:

$$\forall L'' \in \text{NP}, \text{ we have } L'' \leq_p L'$$

2) If we show $L' \leq_p L$, then by transitivity we know that: $\forall L'' \in \text{NP}, \text{ we have } L'' \leq_p L$.

Thus L is NP-hard.

Ex: VertexCover is NP-complete

- 3-SAT is NP-complete (shown by S. Cook)
- 3-SAT \leq_p VertexCover
- VertexCover is in NP (we showed this earlier)
- Therefore VertexCover is also NP-complete

So, poly-time algorithm for VertexCover would give poly-time algs for everything in NP

Coping with NP-Completeness

- Is your real problem a special subcase?
 - E.g. 3-SAT is NP-complete, but 2-SAT is not;
 - Ditto 3 vs 2-coloring
 - E.g. maybe you only need planar graphs, or degree 3 graphs, or ...
- Guaranteed approximation good enough?
 - E.g. Euclidean TSP within 1.5 \times Opt in poly time
- Clever exhaustive search may be fast enough in practice, e.g. Backtrack, Branch & Bound, pruning
- Heuristics – usually a good approximation and/or usually fast

NP-complete problem: TSP

Input: An undirected graph $G=(V,E)$ with integer edge weights, and an integer b.

Output: YES iff there is a simple cycle in G passing through all vertices (once), with total cost $\leq b$.

Example: $b = 34$
2x Approximation to EuclideanTSP

• A TSP tour visits all vertices, so contains a spanning tree, so TSP cost is > cost of min spanning tree.
• Find MST
• Find “DFS” Tour
• Shortcut
• TSP \leq \text{shortcut} < \text{DFST} = 2 \times \text{MST} < 2 \times \text{TSP}

Summary

• Big-O – good
• P – good
• Exp – bad
• Exp, but hints help? NP
• NP-hard, NP-complete – bad (I bet)
• To show NP-complete – reductions
• NP-complete = hopeless? – no, but you need to lower your expectations: heuristics & approximations.