Kevin Kline was in "French Kiss" with Meg Ryan
Meg Ryan was in "Sleepless in Seattle" with Tom Hanks
Tom Hanks was in "Apollo 13" with Kevin Bacon
Objects & Relationships

- The Kevin Bacon Game:
 - Actors
 - Two are related if they’ve been in a movie together

- Exam Scheduling:
 - Classes
 - Two are related if they have students in common

- Traveling Salesperson Problem:
 - Cities
 - Two are related if can travel directly between them
Graphs

- An extremely important formalism for representing (binary) relationships
- Objects: “vertices”, aka “nodes”
- Relationships between pairs: “edges”, aka “arcs”
- Formally, a graph $G = (V, E)$ is a pair of sets, V the vertices and E the edges
Undirected Graph \(G = (V,E) \)
Undirected Graph $G = (V, E)$
Undirected Graph $G = (V,E)$
Undirected Graph $G = (V, E)$
Undirected Graph \(G = (V,E) \)
Graphs don’t live in Flatland

Geometrical drawing is mentally convenient, but mathematically irrelevant: 4 drawings, 1 graph.
Directed Graph $G = (V,E)$
Directed Graph $G = (V, E)$
Directed Graph $G = (V,E)$
Directed Graph $G = (V,E)$
Directed Graph $G = (V,E)$

“loop”

“multi-edge”
Specifying undirected graphs as input

- What are the vertices?
 - Explicitly list them:
 \{“A”, “7”, “3”, “4”\}

- What are the edges?
 - Either, set of edges
 \{\{A,3\}, \{7,4\}, \{4,3\}, \{4,A\}\}
 - Or, (symmetric) adjacency matrix:

\[
\begin{array}{cccc}
\text{A} & 7 & 3 & 4 \\
A & 0 & 0 & 1 & 1 \\
7 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 1 \\
4 & 1 & 1 & 1 & 0 \\
\end{array}
\]
Specifying directed graphs as input

- What are the vertices
 - Explicitly list them: \{“A”, “7”, “3”, “4”\}

- What are the edges
 - Either, set of directed edges: \{(A,4), (4,7), (4,3), (4,A), (A,3)\}
 - Or, (nonsymmetric) adjacency matrix:
Vertices vs # Edges

- Let G be an undirected graph with n vertices and m edges.
- How are n and m related?
- Since
 - every edge connects two different vertices (no loops), and
 - no two edges connect the same two vertices (no multi-edges),

 it must be true that: $0 \leq m \leq n(n-1)/2 = O(n^2)$
More Cool Graph Lingo

- A graph is called *sparse* if \(m \ll n^2 \), otherwise it is *dense*
 - Boundary is somewhat fuzzy; \(O(n) \) edges is certainly sparse, \(\Omega(n^2) \) edges is dense.
- Sparse graphs are common in practice
 - E.g., all planar graphs are sparse
- Q: which is a better run time, \(O(n+m) \) or \(O(n^2) \)?
 A: \(O(n+m) = O(n^2) \), but \(n+m \) usually way better!
Representing Graph $G = (V,E)$

- **n** vertices, **m** edges

- **Vertex set** $V = \{ v_1, \ldots, v_n \}$

- **Adjacency Matrix** A
 - $A[i,j] = 1$ iff $(v_i, v_j) \in E$
 - Space is n^2 bits

- **Advantages:**
 - $O(1)$ test for presence or absence of edges.
 - compact if in packed binary form for large m

- **Disadvantages:** inefficient for sparse graphs

\[
\begin{array}{cccc}
A & 7 & 3 & 4 \\
A & 0 & 0 & 1 & 1 \\
7 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 1 \\
4 & 1 & 1 & 1 & 0 \\
\end{array}
\]
Representing Graph $G=(V,E)$

- Vertices: n vertices, m edges

- **Adjacency List:**
 - $O(n+m)$ words

- **Advantages:**
 - Compact for sparse graphs
 - Easily see all edges

- **Disadvantages:**
 - More complex data structure
 - no $O(1)$ edge test
Representing Graph $G=(V,E)$

- **n** vertices, **m** edges

- **Adjacency List:**
 - $O(n+m)$ words

- Back- and cross pointers more work to build, but allow easier traversal and deletion of edges, *if needed*, (don’t bother if not)
Graph Traversal

- Learn the basic structure of a graph
- “Walk,” via edges, from a fixed starting vertex v to all vertices reachable from v

- Three states of vertices
 - undiscovered
 - discovered
 - fully-explored
Breadth-First Search

- Completely explore the vertices in order of their distance from v

- Naturally implemented using a queue
BFS(v)

Global initialization: mark all vertices "undiscovered"
BFS(v)
 mark v "discovered"
queue = v
while queue not empty
 u = remove_first(queue)
 for each edge {u,x}
 if (x is undiscovered)
 mark x discovered
 append x on queue
 mark u completed

Exercise: modify code to number vertices & compute level numbers
BFS(v)
BFS(v)

Queue: 2 3
BFS(v)

Queue: 3 4
BFS(v)

Queue: 4 5 6 7

Diagram of a graph.
BFS(v)

Queue: 5 6 7 8 9
BFS(v)

Queue: 8 9 10 11
BFS(v)

Queue: 10 11 12 13
BFS(v)
BFS analysis

- Each edge is explored once from each end-point (at most)

- Each vertex is discovered by following a different edge

- Total cost $O(m)$ where $m =$ # of edges
Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree – the "breadth first spanning tree" of G
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels
BFS Application: Shortest Paths

Tree (solid edges) gives shortest paths from start vertex.

Can label by distances from start. All edges connect same/adjacent levels.
Why fuss about trees?

- Trees are simpler than graphs
- Ditto for algorithms on trees vs on graphs
- So, this is often a good way to approach a graph problem: find a “nice” tree in the graph, i.e., one such that non-tree edges have some simplifying structure
- E.g., BFS finds a tree s.t. level-jumps are minimized
- DFS (next) finds a different tree, but it also has interesting structure…
Graph Search Application: Connected Components

Want to answer questions of the form:

- given vertices u and v, is there a path from u to v?

Idea: create array A such that $A[u] = \text{smallest numbered vertex that is connected to } u$

Q: Why not create 2-d array $\text{Path}[u,v]$?
Graph Search Application: Connected Components

- initial state: all v undiscovered
 for $v=1$ to n do
 if state(v) != fully-explored then
 BFS(v): setting $A[u] \leftarrow v$ for each u found
 (and marking u discovered/fully-explored)
 endif
 endfor

- Total cost: $O(n+m)$
 - each edge is touched a constant number of times
 - works also with DFS
Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack
DFS(v) - explicit stack

Global Initialization: mark all vertices "undiscovered"

DFS(v)

mark v "discovered"
push (v,1) onto empty stack
while stack not empty
 (u,i) = pop(stack)
 for (; i ≤ # of neighbors of u; i++)
 x = ith edge on u’s edge list
 if (x is undiscovered)
 mark x “discovered”
push (u,i+1) // save info to resume with u’s next edge,
 u = x // after exploring from x,
i = 1 // (starting with its first edge)
mark u completed

Exercise: modify to compute vertex numbering

Idea: stack of unfinished vertices, plus pointers into their edge lists to say what work remains to finish.
DFS(v) – Recursive version

Global Initialization:
mark all vertices v "undiscovered" via v.dfs# = -1
dfscouter = 0

DFS(v)
 v.dfs# = dfscouter++ // mark v “discovered”, & number it
 for each edge (v,x)
 if (x.dfs# = -1) // tree edge (x previously undiscovered)
 DFS(x)
 else … // code for back-, fwd-, parent,
 // edges, if needed
 // mark v “completed,” if needed
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Call Stack (Edge list):

A (B,J)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)

Diagram showing: A,1, B,2, C, D, E, F, G, H, I, J, K, L, M.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)

Diagram:
- A,1
- B,2
- C,3
- G
- H
- K
- L
- D
- F
- I
- M
- E
- J

Vertices colored according to their exploration status.
Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
- (Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - D (C, E, F)
 - E (D, F)
 - F (D, E, G)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - D (C, E, F)
 - E (D, F)
 - F (D, E, G)
 - G (C, F)

Diagram:
- A (1)
- B (2)
- C (3)
- D (4)
- E (5)
- F (6)
- G (7)
- H
- I
- J
- K
- L
- M
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - D (C,F,F)
 - E (D,F)
 - F (D,E,G)
 - G (C,F)

- A, 1
- B, 2
- C, 3
- G, 7
- D, 4
- F, 6
- E, 5
- H
- K
- L
- M
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)
- F (D,E,G)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B,J)
- B (A,C,J)
- C (B,D,G,H)
- D (C,E,F)
- E (D,F)

Diagram:
- A (1)
- B (2)
- C (3)
- D (4)
- E (5)
- F (6)
- G (7)
- H
- I
- J
- K
- L
- M
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
- (A, B, J)
- (B, A, C, J)
- (C, B, D, G, H)
- (D, C, F, F)

Color code:
- Undiscovered
- Discovered
- Fully-explored
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)

Color code:
- undiscovered
- discovered
- fully-explored
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)

Diagram:
- A (1)
 - B (2)
 - C (3)
 - G (7)
 - D (4)
 - F (6)
 - E (5)
 - H (8)
 - J
 - K
 - L
 - M
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B,J)
 - B (A,C,J)
 - C (B,D,G,H)
 - H (C,I,J)
 - I (H)

Graph representation:
- A,1
- B,2
- C,3
- D,4
- E,5
- F,6
- G,7
- H,8
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z
Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack: (Edge list)

- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)

Color code:
- undiscovered
- discovered
- fully-explored
Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack: (Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)
- H (C, I, J)
- J (A, B, H, K, L)
- K (J, L)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)
 - K (J, L)
 - L (J, K, M)

Diagram:**

- **A,1**
- **B,2**
- **C,3**
- **G,7**
- **D,4**
- **E,5**
- **F,6**
- **H,8**
- **I,9**
- **J,10**
- **K,11**
- **L,12**
- **M**
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
(Edge list)

A (B, J)
B (A, C, J)
C (B, D, G, H)
H (C, I, J)
J (A, B, H, K, L)
K (J, L)
L (J, K, M)
M (L)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Color code:
- Undiscovered
- Discovered
- Fully-explored

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)
 - C (B, D, G, H)
 - H (C, I, J)
 - J (A, B, H, K, L)
 - K (J, L)
 - L (J, K, M)

Diagram:
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

- **A,1** (undiscovered)
- **B,2** (undiscovered)
- **C,3** (undiscovered)
- **D,4** (undiscovered)
- **E,5** (undiscovered)
- **F,6** (undiscovered)
- **G,7** (undiscovered)
- **H,8** (discovered)
- **I,9** (discovered)
- **J,10** (fully-explored)
- **K,11** (fully-explored)
- **L,12** (fully-explored)
- **M,13** (discovered)

Call Stack:

- **A (B,J)**
- **B (A,C,J)**
- **C (B,D,G,H)**
- **H (C,I,J)**
- **J (A,B,H,K,L)**
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>undiscovered</td>
</tr>
<tr>
<td>B</td>
<td>undiscovered</td>
</tr>
<tr>
<td>C</td>
<td>undiscovered</td>
</tr>
<tr>
<td>D</td>
<td>undiscovered</td>
</tr>
<tr>
<td>E</td>
<td>undiscovered</td>
</tr>
<tr>
<td>F</td>
<td>undiscovered</td>
</tr>
<tr>
<td>G</td>
<td>undiscovered</td>
</tr>
<tr>
<td>H</td>
<td>undiscovered</td>
</tr>
<tr>
<td>I</td>
<td>undiscovered</td>
</tr>
<tr>
<td>J</td>
<td>undiscovered</td>
</tr>
<tr>
<td>K</td>
<td>undiscovered</td>
</tr>
<tr>
<td>L</td>
<td>undiscovered</td>
</tr>
<tr>
<td>M</td>
<td>undiscovered</td>
</tr>
</tbody>
</table>

A (B, J)
B (A, C, J)
C (B, D, G, H)
H (C, J,)
J (A, B, H, K, L)
Suppose edge lists at each vertex are sorted alphabetically.

DFS(A)

Call Stack:
(Edge list)
A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
- A (B, J)
- B (A, C, J)
- C (B, D, G, H)

Graph:
- A (1, white)
- B (2, green)
- J (10, green)
- C (3, green)
- G (7, red)
- H (8, red)
- K (11, red)
- L (12, red)
- M (13, red)
- D (4, red)
- F (6, red)
- I (9, red)
- E (5, red)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
- (Edge list)
 - A (B, J)
 - B (A, C, J)

Diagram:
- A,1
- B,2
- J,10
- C,3
- G,7
- H,8
- K,11
- L,12
- D,4
- F,6
- I,9
- M,13
- E,5
Suppose edge lists at each vertex are sorted alphabetically.
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B, J)
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- undiscovered
- discovered
- fully-explored

Call Stack:
(Edge list)
A (B, J)

A, 1

B, 2

C, 3

D, 4

E, 5

F, 6

G, 7

H, 8

I, 9

J, 10

K, 11

L, 12

M, 13
DFS(A)

Suppose edge lists at each vertex are sorted alphabetically.

Color code:
- **undiscovered**
- **discovered**
- **fully-explored**

Call Stack:
(Edge list)

TA-DA!!
DFS(A)

Edge code:
- Tree edge
- Back edge

Diagram:
- Tree edges (solid lines)
- Back edges (dashed lines)
DFS(A)

Edge code:
- Tree edge
- Back edge
DFS(A)

Edge code:
- Tree edge
- Back edge

Diagram of a tree with nodes labeled A to M and associated numbers.
DFS(A)

Edge code:
Tree edge
Back edge
DFS(A)

Edge code:
Tree edge
Back edge

D,4
E,5
F,6
A,1
B,2
C,3
G,7
H,8
I,9
J,10
K,11
L,12
M,13
DFS(A)

Edge code:
- Tree edge
- Back edge

Diagram of a graph with nodes labeled A to M and edge connections indicating tree and back edges.
DFS(A)

Edge code:
- Tree edge
- Back edge
- No Cross Edges!
Properties of (Undirected) DFS(v)

Like BFS(v):
- DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
- Edges into then-undiscovered vertices define a tree – the "depth first spanning tree" of G

Unlike the BFS tree:
- the DF spanning tree isn't minimum depth
- its levels don't reflect min distance from the root
- non-tree edges never join vertices on the same or adjacent levels

BUT…
Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

- No cross edges!
Why fuss about trees (again)?

As with BFS, DFS has found a tree in the graph s.t. non-tree edges are “simple”--only descendant/ancestor
A simple problem on trees

Given: tree T, a value $L(v)$ defined for every vertex v in T

Goal: find $M(v)$, the min value of $L(v)$ anywhere in the subtree rooted at v (including v itself).

How? Depth first search, using:

$$M(v) = \begin{cases} L(v) & \text{if } v \text{ is a leaf} \\ \min(L(v), \min_{w \text{ a child of } v} M(w)) & \text{otherwise} \end{cases}$$
Application: Articulation Points

- A node in an undirected graph is an **articulation point** iff removing it disconnects the graph.

- Articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components.
Identifying key proteins on the anthrax predicted network

Articulation point proteins

Ram Samudrala/Jason McDermott
Articulation Points

Articulation point iff its removal disconnects the graph.
Articulation Points
Simple Case: Artic. Pts in a tree

- Leaves -- never articulation points
- Internal nodes -- always articulation points
- Root -- articulation point if and only if two or more children

- Non-tree: extra edges remove some articulation points (which ones?)
Articulation Points from DFS

- Root node is an articulation point iff it has more than one child.
- Leaf is never an articulation point.
- Non-leaf, non-root node u is an articulation point if there exists a child y of u such that no non-tree edge goes above u from y or below.

If removal of u does NOT separate x, there must be an exit from x's subtree. How? Via back edge.
Articulation Points: the "LOW" function

- **Definition:** LOW(v) is the lowest dfs# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.

- **Key idea 1:** if some child x of v has LOW(x) ≥ dfs#(v) then v is an articulation point (excl. root)

- **Key idea 2:** LOW(v) = \(\min (\{ \text{dfs#}(v) \} \cup \{ \text{LOW}(w) \mid w \text{ a child of } v \} \cup \{ \text{dfs#}(x) \mid \{v,x\} \text{ is a back edge from } v \}) \)
DFS(v) for Finding Articulation Points

Global initialization: v.dfs# = -1 for all v.

DFS(v)
 v.dfs# = dfscounter++
 v.low = v.dfs# // initialization
for each edge {v,x}
 if (x.dfs# == -1) // x is undiscovered
 DFS(x)
 v.low = min(v.low, x.low)
 if (x.low >= v.dfs#)
 print “v is art. pt., separating x”
 else if (x is not v’s parent)
 v.low = min(v.low, x.dfs#)

Equiv: “if({v,x} is a back edge)”
Why?
Articulation Points
Articulation Points

<table>
<thead>
<tr>
<th>Vertex</th>
<th>DFS #</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>M</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
Articulation Points

<table>
<thead>
<tr>
<th>Vertex</th>
<th>DFS #</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AP’s:
BCC’s:
1)
2)
3)
4)
Articulation Points

AP’s: C, B, F

BCC’s:
1) C--D, D--E, E--C
2) B--C
3) A--B, B--F, F--A
4) F--G, G--H, H--F

<table>
<thead>
<tr>
<th>Vertex</th>
<th>DFS #</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>