CSE 417: Algorithms and Computational Complexity

Winter 2005
Instructor: W. L. Ruzzo
Lectures 13-17

Divide and Conquer Algorithms
The Divide and Conquer Paradigm

Outline:
- General Idea
- Review of Merge Sort
- Why does it work?
 - Importance of balance
 - Importance of super-linear growth
- Two interesting applications
 - Polynomial Multiplication
 - Matrix Multiplication
- Finding & Solving Recurrences
Algorithm Design Techniques

- **Divide & Conquer**
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)
Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

- $T(n) = 2T(n/2) + cn$, $n \geq 2$
- $T(1) = 0$
- Solution: $\Theta(n \log n)$

Log n levels

O(n) work per level
Merge Sort

MS(A: array[1..n]) returns array[1..n] {
 If (n=1) return A[1];
 New U: array[1:n/2] = MS(A[1..n/2]);
 New L: array[1:n/2] = MS(A[n/2+1..n]);
 Return(Merge(U,L));
}

Merge(U,L: array[1..n]) {
 New C: array[1..2n];
 a=1; b=1;
 For i = 1 to 2n
 C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
 Return C;
}
Going From Code to Recurrence

1. Carefully define what you’re counting, and write it down!

 “Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length \(n \geq 1 \)”

2. In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

3. Write Recurrence(s)
Merge Sort

MS(A: array[1..n]) returns array[1..n] {
 If(n=1) return A[1];
 New L:array[1:n/2] = MS(A[1..n/2]);
 New R:array[1:n/2] = MS(A[n/2+1..n]);
 Return(Merge(L,R));
}

Merge(A,B: array[1..n]) {
 New C: array[1..2n];
 a=1; b=1;
 For i = 1 to 2n {
 C[i] = ‘smaller of A[a], B[b] and a++ or b++’;
 }
 Return C;
}
The Recurrence

\[C(n) = \begin{cases}
0 & \text{if } n = 1 \\
2C(n/2) + (n - 1) & \text{if } n > 1
\end{cases} \]

Base case

Recursive calls

One compare per element added to merged list, except the last.

Total time: proportional to \(C(n) \)
(loops, copying data, parameter passing, etc.)
Why Balanced Subdivision?

- Alternative "divide & conquer" algorithm:
 - Sort n-1
 - Sort last 1
 - Merge them

- \(T(n) = T(n-1) + T(1) + 3n \) for \(n \geq 2 \)
- \(T(1) = 0 \)
- Solution: \(3n + 3(n-1) + 3(n-2) \ldots = \Theta(n^2) \)
Another D&C Approach

- Suppose we've already invented DumbSort, taking time n^2
- Try *Just One Level* of divide & conquer:
 - DumbSort(first $n/2$ elements)
 - DumbSort(last $n/2$ elements)
 - Merge results
- Time: $(n/2)^2 + (n/2)^2 + n = n^2/2 + n$
 - Almost twice as fast!
Another D&C Approach, cont.

- Moral 1:
 Two problems of half size are *better* than one full-size problem, even given the \(O(n)\) overhead of recombining, since the base algorithm has *super-linear* complexity.

- Moral 2:
 If a little's good, then more's better—two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").
Another D&C Approach, cont.

- Moral 3: unbalanced division less good:
 - \((.1n)^2 + (.9n)^2 + n = .82n^2 + n\)
 - The 18% savings compounds significantly if you carry recursion to more levels, actually giving \(O(n\log n)\), but with a bigger constant. So worth doing if you can’t get 50-50 split, but balanced is better if you can.
 - This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.
 - \((1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n\)
 - Little improvement here.
Another D&C Example: Multiplying Faster

- On the first HW you analyzed our usual algorithm for multiplying numbers
 - $\Theta(n^2)$ time

- We can do better!
 - We’ll describe the basic ideas by multiplying polynomials rather than integers
 - Advantage is we don’t get confused by worrying about carries at first
Notes on Polynomials

These are just formal sequences of coefficients so when we show something multiplied by x^k it just means shifted k places to the left – basically no work.

Usual Polynomial Multiplication:

\[
\begin{array}{c}
3x^2 + 2x + 2 \\
\hline
x^2 - 3x + 1 \\
3x^2 + 2x + 2 \\
\hline
-9x^3 - 6x^2 - 6x \\
3x^4 + 2x^3 + 2x^2 \\
\hline
3x^4 - 7x^3 - x^2 - 4x + 2
\end{array}
\]
Polynomial Multiplication

- **Given:**
 - Degree \(m-1 \) polynomials \(P \) and \(Q \)
 - \(P = a_0 + a_1 x + a_2 x^2 + \ldots + a_{m-2} x^{m-2} + a_{m-1} x^{m-1} \)
 - \(Q = b_0 + b_1 x + b_2 x^2 + \ldots + b_{m-2} x^{m-2} + b_{m-1} x^{m-1} \)

- **Compute:**
 - Degree \(2m-2 \) Polynomial \(P \cdot Q \)
 - \(P \cdot Q = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + \ldots + (a_{m-2} b_{m-1} + a_{m-1} b_{m-2}) x^{2m-3} + a_{m-1} b_{m-1} x^{2m-2} \)

- **Obvious Algorithm:**
 - Compute all \(a_i b_j \) and collect terms
 - \(\Theta(m^2) \) time
Naive
Divide and Conquer

Assume \(m=2k \)

\[P = (a_0 + a_1 x + a_2 x^2 + \ldots + a_{k-2} x^{k-2} + a_{k-1} x^{k-1}) + (a_k + a_{k+1} x + \ldots + a_{m-2} x^{k-2} + a_{m-1} x^{k-1}) x^k \]

\[= P_0 + P_1 x^k \]

\[Q = Q_0 + Q_1 x^k \]

\[P \cdot Q = (P_0+P_1 x^k)(Q_0+Q_1 x^k) \]

\[= P_0Q_0 + (P_1Q_0+P_0Q_1)x^k + P_1Q_1 x^{2k} \]

4 sub-problems of size \(k=m/2 \) plus linear combining

\[T(m)=4T(m/2)+cm \]

Solution \(T(m) = O(m^2) \)
Karatsuba’s Algorithm

A better way to compute terms

Compute
- $P_0 Q_0$
- $P_1 Q_1$
- $(P_0 + P_1)(Q_0 + Q_1)$ which is $P_0 Q_0 + P_1 Q_0 + P_0 Q_1 + P_1 Q_1$

Then
- $P_0 Q_1 + P_1 Q_0 = (P_0 + P_1)(Q_0 + Q_1) - P_0 Q_0 - P_1 Q_1$

3 sub-problems of size $m/2$ plus $O(m)$ work

- $T(m) = 3 T(m/2) + cm$
- $T(m) = O(m^\alpha)$ where $\alpha = \log_2 3 = 1.59...$
Karatsuba: Details

PolyMul(P, Q):

// P, Q are length m =2k vectors, with P[i], Q[i] being
// the coefficient of x^i in polynomials P, Q respectively.
if (m==1) return (P[0]*Q[0]);
Let Pzero be elements 0..k-1 of P; Pone be elements k..m-1
Qzero, Qone : similar
Prod1 = PolyMul(Pzero, Qzero); // result is a (2k-1)-vector
Prod2 = PolyMul(Pone, Qone); // ditto
Pzo = Pzero + Pone; // add corresponding elements
Qzo = Qzero + Qone; // ditto
Prod3 = polyMul(Pzo, Qzo); // another (2k-1)-vector
Mid = Prod3 – Prod1 – Prod2; // subtract corr. elements
R = Prod1 + Shift(Mid, m/2) + Shift(Prod2,m) // a (2m-1)-vector
Return(R);
Multiplication – The Bottom Line

- Polynomials
 - Naïve: $\Theta(n^2)$
 - Karatsuba: $\Theta(n^{1.59\ldots})$
 - Best known: $\Theta(n \log n)$
 - "Fast Fourier Transform"

- Integers
 - Similar, but some ugly details re: carries, etc.
 gives $\Theta(n \log n \log \log n)$,
 - but mostly unused in practice
Recurrences

- Where they come from, how to find them (above)

- Next: how to solve them
Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

- $T(n) = 2T(n/2) + cn$, $n \geq 2$
- $T(1) = 0$
- Solution: $\Theta(n \log n)$

Log n levels

$O(n)$ work per level
Solve: $T(1) = c$

$T(n) = 2 \cdot T(n/2) + cn$

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1=2^0$</td>
<td>n</td>
<td>cn</td>
</tr>
<tr>
<td>1</td>
<td>$2=2^1$</td>
<td>$n/2$</td>
<td>$2 \cdot c \cdot n/2$</td>
</tr>
<tr>
<td>2</td>
<td>$4=2^2$</td>
<td>$n/4$</td>
<td>$4 \cdot c \cdot n/4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$n/2^i$</td>
<td>$2^i \cdot c \cdot n/2^i$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>k-1</td>
<td>2^{k-1}</td>
<td>$n/2^{k-1}$</td>
<td>$2^{k-1} \cdot c \cdot n/2^{k-1}$</td>
</tr>
<tr>
<td>k</td>
<td>2^k</td>
<td>$n/2^k=1$</td>
<td>$2^k \cdot T(1)$</td>
</tr>
</tbody>
</table>

Total work: add last col
Solve: \(T(1) = c \)
\[T(n) = 4 \cdot T(n/2) + cn \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(1 = 4^0)</td>
<td>(n)</td>
<td>(cn)</td>
</tr>
<tr>
<td>1</td>
<td>(4 = 4^1)</td>
<td>(n/2)</td>
<td>(4 \cdot c \cdot n/2)</td>
</tr>
<tr>
<td>2</td>
<td>(16 = 4^2)</td>
<td>(n/4)</td>
<td>(16 \cdot c \cdot n/4)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(i)</td>
<td>(4^i)</td>
<td>(n/2^i)</td>
<td>(4^i \cdot c \cdot n/2^i)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(k-1)</td>
<td>(4^{k-1})</td>
<td>(n/2^{k-1})</td>
<td>(4^{k-1} \cdot c \cdot n/2^{k-1})</td>
</tr>
<tr>
<td>(k)</td>
<td>(4^k)</td>
<td>(n/2^k = 1)</td>
<td>(4^k \cdot T(1))</td>
</tr>
</tbody>
</table>
Solve: \(T(1) = c \)
\[
T(n) = 3 \ T(n/2) + cn
\]

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(cn)</td>
</tr>
<tr>
<td>1</td>
<td>(3)</td>
<td>(n/2)</td>
<td>(3 \ c \ n/2)</td>
</tr>
<tr>
<td>2</td>
<td>(9)</td>
<td>(n/4)</td>
<td>(9 \ c \ n/4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(i)</td>
<td>(3^i)</td>
<td>(n/2^i)</td>
<td>(3^i \ c \ n/2^i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(k-1)</td>
<td>(3^{k-1})</td>
<td>(n/2^{k-1})</td>
<td>(3^{k-1} \ c \ n/2^{k-1})</td>
</tr>
<tr>
<td>(k)</td>
<td>(3^k)</td>
<td>(n/2^k=1)</td>
<td>(3^k \ T(1))</td>
</tr>
</tbody>
</table>

\[n = 2^k ; \ k = \log_2 n \]

Total Work: \(T(n) = \sum_{i=0}^{k} 3^i \frac{cn}{2^i} \)
Solve: \(T(1) = c \)

\[
T(n) = 3 \ T(n/2) + cn \quad \text{(cont.)}
\]

\[
T(n) = \sum_{i=0}^{k} \frac{3^i \ cn}{2^i}
\]

\[
= cn \sum_{i=0}^{k} \frac{3^i}{2^i}
\]

\[
= cn \sum_{i=0}^{k} \left(\frac{3}{2}\right)^i
\]

\[
= cn \left(\frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\left(\frac{3}{2}\right) - 1}\right)
\]

\[
\sum_{i=0}^{k} x^i = \frac{x^{k+1} - 1}{x - 1} \quad (x \neq 1)
\]
Solve:

\[T(1) = c \]
\[T(n) = 3 \ T(n/2) + cn \]
(cont.)

\[
\begin{align*}
&= 2cn \left(\left(\frac{3}{2} \right)^{k+1} - 1 \right) \\
&< 2cn \left(\frac{3}{2} \right)^{k+1} \\
&= 3cn \left(\frac{3}{2} \right)^k \\
&= 3cn \frac{3^k}{2^k}
\end{align*}
\]
Solve: \(T(1) = c \)
\(T(n) = 3 \cdot T(n/2) + cn \) (cont.)

\[
= 3cn \frac{3^{\log_2 n}}{2^{\log_2 n}} \\
= 3cn \frac{3^{\log_2 n}}{n} \\
= 3c 3^{\log_2 n} \\
= 3c(n^{\log_2 3}) \\
= O(n^{1.59...})
\]

\[
a^{\log_b n} \\
= \left(b^{\log_b a}\right)^{\log_b n} \\
= \left(b^{\log_b n}\right)^{\log_b a} \\
= n^{\log_b a}
\]
Master Divide and Conquer Recurrence

- If $T(n) = aT(n/b) + cn^k$ for $n > b$ then
 - if $a > b^k$ then $T(n)$ is $\Theta(n^{\log_b a})$
 - if $a < b^k$ then $T(n)$ is $\Theta(n^k)$
 - if $a = b^k$ then $T(n)$ is $\Theta(n^k \log n)$
- Works even if it is $\lceil n/b \rceil$ instead of n/b.
Another Example:

Matrix Multiplication –

Strassen’s Method
Multiplying Matrices

$$\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix} \cdot \begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix} = \begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & \cdots & a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \cdots & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \cdots & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \cdots & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}$$

- n^3 multiplications, $n^3 - n^2$ additions
Simple Matrix Multiply

for $i = 1$ to n
 for $j = 1$ to n
 $C[i,j] = 0$
 for $k = 1$ to n
 $C[i,j] = C[i,j] + A[i,k] \times B[k,j]$

n^3 multiplications, n^3-n^2 additions
Multiplying Matrices

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{pmatrix}
\]

\[
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} \\
a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \\
a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} \\
a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41}
\end{pmatrix}
\begin{pmatrix}
a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{pmatrix}
\begin{pmatrix}
a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} + a_{14}b_{43} \\
a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} + a_{24}b_{43} \\
a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} + a_{34}b_{43} \\
a_{41}b_{13} + a_{42}b_{23} + a_{43}b_{33} + a_{44}b_{43}
\end{pmatrix}
\begin{pmatrix}
a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{pmatrix}
\]

=

\[
\begin{pmatrix}
\end{pmatrix}
\]
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
=
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & \cdots & a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & \cdots & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & \cdots & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & \cdots & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]
Multiplying Matrices

Consider the following matrices:

\[
\begin{align*}
A &= \begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22} \\
 a_{31} & a_{32} \\
 a_{41} & a_{42}
\end{bmatrix}, & B &= \begin{bmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22} \\
 b_{31} & b_{32} \\
 b_{41} & b_{42}
\end{bmatrix}
\end{align*}
\]

The product of these matrices is given by:

\[
AB = \begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]

This can be visualized as:

\[
\begin{align*}
\begin{array}{c|c|c|c}
A_{11} & A_{12} & A_{21} & A_{22} \\
\hline
B_{11} & B_{12} & B_{21} & B_{22}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c|c|c|c}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} & A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{array}
\end{align*}
\]
Multiplying Matrices

\[
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
=
\begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

Counting arithmetic operations:
\[T(n) = 8T(n/2) + 4(n/2)^2 = 8T(n/2) + n^2\]
Multiplying Matrices

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
8T(n/2) + n^2 & \text{if } n > 1
\end{cases} \]

- By Master Recurrence, if
 \[T(n) = aT(n/b) + cn^k \] & \(a > b^k \) then
 \[T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 8}) = \Theta(n^3) \]
Strassen’s algorithm

- Strassen’s algorithm
 - Multiply 2x2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)
 - T(n)=7T(n/2)+cn^2
 - 7>2^2 so T(n) is \(\Theta(n^{\log_27}) \) which is \(O(n^{2.81}) \)
 - Fastest algorithms theoretically use \(O(n^{2.376}) \) time
 - not practical but Strassen’s is practical provided calculations are exact and we stop recursion when matrix has size about 100 (maybe 10)
The algorithm

\[P_1 = A_{12}(B_{11}+B_{21}) \]
\[P_3 = (A_{11} - A_{12})B_{11} \]
\[P_5 = (A_{22} - A_{12})(B_{21} - B_{22}) \]
\[P_6 = (A_{11} - A_{21})(B_{12} - B_{11}) \]
\[P_7 = (A_{21} - A_{12})(B_{11}+B_{22}) \]
\[C_{11} = P_1 + P_3 \]
\[C_{21} = P_1 + P_4 + P_5 + P_7 \]
\[P_2 = A_{21}(B_{12}+B_{22}) \]
\[P_4 = (A_{22} - A_{21})B_{22} \]
\[C_{12} = P_2 + P_3 + P_6 - P_7 \]
\[C_{22} = P_2 + P_4 \]
Another D&C Example: Fast exponentiation

- Power(a,n)
 - Input: integer n and number a
 - Output: a^n

- Obvious algorithm
 - n-1 multiplications

- Observation:
 - if n is even, n=2m, then a^n=a^m•a^m
Divide & Conquer Algorithm

- Power(a,n)
 - if n=0 then
 - return(1)
 - else
 - x ← Power(a, ⌊n/2⌋)
 - if n is even then
 - return(x•x)
 - else
 - return(a•x•x)
Analysis

- Worst-case recurrence
 - $T(n) = T(\lfloor n/2 \rfloor) + 2$

- By master theorem
 - $T(n) = O(\log n)$ (a=1, b=2, k=0)

- More precise analysis:
 - $T(n) = \lceil \log_2 n \rceil + \# \text{ of } 1\text{'s in } n\text{'s binary representation}$
A Practical Application- RSA

- Instead of \(a^n \) want \(a^n \mod N \)
 - \(a^{i+j} \mod N = ((a^i \mod N) \cdot (a^j \mod N)) \mod N \)
 - same algorithm applies with each \(x \cdot y \) replaced by
 - \(((x \mod N) \cdot (y \mod N)) \mod N \)

- In RSA cryptosystem (widely used for security)
 - need \(a^n \mod N \) where \(a, n, N \) each typically have 1024 bits
 - Power: at most 2048 multiplies of 1024 bit numbers
 - relatively easy for modern machines
 - Naive algorithm: \(2^{1024} \) multiplies
Another Example: Binary search for roots (bisection method)

- **Given:**
 - continuous function f and two points $a<b$ with $f(a)<0$ and $f(b)>0$

- **Find:**
 - approximation to c s.t. $f(c)=0$ and $a<c<b$
Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing subproblems of roughly equal size is usually critical
- Examples:
 - Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, …