Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that number of different parameters in the recursive algorithm is "small" (e.g., bounded by a low-degree polynomial)
- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

Longest Increasing Run

- Given a sequence of integers s_1, \ldots, s_n find a subsequence $s_i < s_{i+1} < \ldots < s_{i+k}$ so that $k > 0$ is as large as possible.
- e.g. Given $9, 5, 2, 5, 8, 7, 3, 1, 6, 9$ as input,
 - possible increasing subsequence is $1, 6$
 - better is $2, 5, 8$ or $1, 6, 9$ (either or which would be a correct output to our problem)

Longest Increasing Subsequence

- Given a sequence of integers s_1, \ldots, s_n find a subsequence $s_{i_1} < s_{i_2} < \ldots < s_{i_k}$ with $i_1 < \ldots < i_k$ so that k is as large as possible.
- e.g. Given $9, 5, 2, 5, 8, 7, 3, 1, 6, 9$ as input,
 - possible increasing subsequence is $2, 5, 7$
 - better is $2, 5, 6, 9$ or $2, 5, 8, 9$ (either or which would be a correct output to our problem; and there are others)
Find recursive algorithm

• Solve sub-problem on $s_1,...,s_{n-1}$ and then try to extend using s_n

• Two cases:
 - s_n is not used
 * answer is the same answer as on $s_1,...,s_{n-1}$
 - s_n is used
 * answer is s_n preceded by the longest increasing subsequence in $s_1,...,s_{n-1}$ that ends in a number smaller than s_n

Refined recursive idea (stronger notion of subproblem)

• Suppose that we knew for each $i<n$ the longest increasing subsequence in $s_1,...,s_{n-1}$ ending in s_i.
 - $i=n-1$ is just the $n-1$ size sub-problem we tried before.

• Now to compute value for $i=n$ find
 - s_n preceded by the maximum over all $i<n$ such that $s_i<s_n$ of the longest increasing subsequence ending in s_i
 - First find the best length rather than trying to actually compute the sequence itself.

Recurrence

• Let $L[i]=$length of longest increasing subsequence in $s_1,...,s_n$ that ends in s_i.

 $L[j]=1+\max\{L[i] : i<j \text{ and } s_i<s_j\}$
 (where max of an empty set is 0)

• Length of longest increasing subsequence:
 - $\max\{L[i] : 1\leq i \leq n\}$

Computing the actual sequence

• For each j, we computed $L[j]=1+\max\{L[i] : i<j \text{ and } s_i<s_j\}$
 (where max of an empty set is 0)

• Also maintain $P[j]$ the value of the i that achieved that max
 - this will be the index of the predecessor of s_j in a longest increasing subsequence that ends in s_j
 - by following the $P[j]$ values we can reconstruct the whole sequence in linear time.
Longest Increasing Subsequence Algorithm

• for \(j = 1 \) to \(n \) do
 \(L[j] \leftarrow 1 \)
 \(P[j] \leftarrow 0 \)
 for \(i = 1 \) to \(j - 1 \) do
 if \(s_i < s_j \) & \(L[i] + 1 > L[j] \) then
 \(P[j] \leftarrow i \)
 \(L[j] \leftarrow L[i] + 1 \)
 endfor
endfor

• Now find \(j \) such that \(L[j] \) is largest and walk backwards through \(P[j] \) pointers to find the sequence.

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>90</td>
<td>50</td>
<td>20</td>
<td>80</td>
<td>70</td>
<td>30</td>
<td>10</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>(L_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_j)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>