Some Algorithm Design Techniques, I

- General overall idea
 - Reduce solving a problem to a smaller problem or problems of the same type
- Greedy algorithms
 - Used when one needs to build something a piece at a time
 - Repeatedly make the greedy choice - the one that looks the best right away
 - e.g. closest pair in TSP search
 - Usually fast if they work (but often don't)

Some Algorithm Design Techniques, II

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)

Some Algorithm Design Techniques, III

- Dynamic Programming
 - Give a solution of a problem using smaller sub-problems, e.g. a recursive solution
 - Useful when the same sub-problems show up again and again in the solution
A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$
- Recursive algorithm:
 - Fibo(n)
 - if $n = 0$ then return(0)
 - else if $n = 1$ then return(1)
 - else return(Fibo(n-1)+Fibo(n-2))

Call tree - start

Full call tree

Memo-ization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memo-ized algorithm from a recursive one to an iterative one
Fibonacci - Dynamic Programming Version

- FiboDP(n):
 - F[0] ← 0
 - F[1] ← 1
 - for i = 2 to n do
 - F[i] = F[i-1] + F[i-2]
 - endfor
 - return(F[n])

Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
 - principle of optimality