Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of “efficiency” that is
 - Simple
 - Relatively independent of changing technology
 - But still useful for prediction - “theoretically bad” algorithms should be bad in practice and vice versa (usually)
Measuring efficiency: The RAM model

• RAM = Random Access Machine

• Time \approx # of instructions executed in an ideal assembly language
 – each simple operation (+, *, -, =, if, call) takes one time step
 – each memory access takes one time step

• No bound on the memory
We left out things but...

• Things we’ve dropped
 – memory hierarchy
 • disk, caches, registers have many orders of magnitude differences in access time
 – not all instructions take the same time in practice

• However,
 – the RAM model is useful for designing algorithms and measuring their efficiency
 – one can usually tune implementations so that the hierarchy etc. is not a huge factor
Complexity analysis

• Problem size \(n \)

 – **Worst-case complexity**: \(\text{max} \ # \text{ steps} \)
 algorithm takes on any input of size \(n \)

 – **Best-case complexity**: \(\text{min} \ # \text{ steps} \)
 algorithm takes on any input of size \(n \)

 – **Average-case complexity**: \(\text{avg} \ # \text{ steps} \)
 algorithm takes on inputs of size \(n \)
Pros and cons:

• Best-case
 – unrealistic overselling
 – can “cheat”: tune algorithm for one easy input

• Worst-case
 – a fast algorithm has a comforting guarantee
 – no way to cheat by hard-coding special cases
 – maybe too pessimistic

• Average-case
 – over what probability distribution?
 – different people may have different average problems
Why Worst-Case Analysis?

• Appropriate for time-critical applications, e.g. avionics
• Unlike Average-Case, no debate about what the right definition is
• Analysis often easier
• Result is often representative of "typical" problem instances
• Of course there are exceptions…
General Goals

• Characterize *growth rate* of run time as a function of problem size, up to a *constant factor*

• Why not try to be more precise?
 – Technological variations (computer, compiler, OS, …) easily 10x or more
 – Being more precise is a ton of work
 – A key question is “scale up”: if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: \(cn^2 \), next year: \(c(2n)^2 = 4cn^2 \): 4 x longer.)
Complexity

• The complexity of an algorithm associates a number $T(n)$, the best/worst/average-case time the algorithm takes, with each problem size n.

• Mathematically,
 – $T: \mathbb{N}^+ \rightarrow \mathbb{R}^+$
 – that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.
Complexity

Time

Problem size

T(n)
Complexity

Time

Problem size

T(n)

2n \log_2 n

n \log_2 n
O-notation etc

• Given two functions f and $g: \mathbb{N} \to \mathbb{R}$

 – $f(n)$ is $O(g(n))$ iff there is a constant $c > 0$ so that $c \cdot g(n)$ is eventually always $\geq f(n)$

 – $f(n)$ is $\Omega(g(n))$ iff there is a constant $c > 0$ so that $c \cdot g(n)$ is eventually always $\leq f(n)$

 – $f(n)$ is $\Theta(g(n))$ iff there are constants c_1 and $c_2 > 0$ so that eventually always $c_1 g(n) \leq f(n) \leq c_2 g(n)$
Examples

• $10n^2 - 16n + 100$ is $O(n^2)$ also $O(n^3)$
 – $10n^2 - 16n + 100 \leq 11n^2$ for all $n \geq 10$

• $10n^2 - 16n + 100$ is $\Omega(n^2)$ also $\Omega(n)$
 – $10n^2 - 16n + 100 \geq 9n^2$ for all $n \geq 16$
 – Therefore also $10n^2 - 16n + 100$ is $\Theta(n^2)$

• $10n^2 - 16n + 100$ is not $O(n)$ also not $\Omega(n^3)$
“One-Way Equalities”

- “2 + 2 is 4” vs 2 + 2 = 4 vs 4 = 2 + 2
- “Every dog is a mammal” vs
 “Every mammal is a dog”
- $2n^2 + 5n$ is $O(n^3)$ vs
 $2n^2 + 5n = O(n^3)$ vs
 $O(n^3) = 2n^2 + 5n$ FALSE
- OK to put big-O in R.H.S. of equality, but not left; better to avoid both.
Domination

- $f(n)$ is $o(g(n))$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ – that is $g(n)$ dominates $f(n)$
- If $\alpha \leq \beta$ then n^α is $O(n^\beta)$
- If $\alpha < \beta$ then n^α is $o(n^\beta)$

Note: if $f(n)$ is $\Theta(g(n))$ then it cannot be $o(g(n))$
Working with \mathcal{O}-Ω-Θ notation

• Claim: For any a, $b>1$ \(\log_a n \) is $\Theta(\log_b n)$
 \[\log_a n = \log_a b \cdot \log_b n \text{ so letting } c = \log_a b \text{ we get that }
 c \log_b n \leq \log_a n \leq c \log_b n \]

• Claim: For any a, and $b>0$, \((n+a)^b\) is $\Theta(n^b)$
 \[(n+a)^b \leq (2n)^b \text{ for } n \geq |a| \]
 \[= 2^b n^b = cn^b \text{ for } c = 2^b \text{ so } (n+a)^b \text{ is } O(n^b) \]
 \[(n+a)^b \geq (n/2)^b \text{ for } n \geq 2|a| \text{ (even if } a < 0) \]
 \[= 2^{-b} n^b = c’n \text{ for } c’ = 2^{-b} \text{ so } (n+a)^b \text{ is } \Omega(n^b) \]
Working with little-o

• \(n^2 = o(n^3) \) [Use algebra]:

\[
\lim_{n \to \infty} \frac{n^2}{n^3} = \lim_{n \to \infty} \frac{1}{n} = 0
\]

• \(n^3 = o(e^n) \) [Use L’Hospital’s rule 3 times]:

\[
\lim_{n \to \infty} \frac{n^3}{e^n} = \lim_{n \to \infty} \frac{3n^2}{e^n} = \lim_{n \to \infty} \frac{6n}{e^n} = \lim_{n \to \infty} \frac{6}{e^n} = 0
\]
Big-Theta, etc. not always “nice”

\[f(n) = \begin{cases}
 n^2, & \text{n even} \\
 n, & \text{n odd}
\end{cases} \]

\[f(n) \neq \Theta(n^a) \text{ for any } a. \]

Fortunately, such nasty cases are rare
A Possible Misunderstanding?

• We have looked at
 – type of complexity analysis
 • worst-, best-, average-case
 – types of function bounds
 • O, Ω, Θ

• These two considerations are independent of each other
 – one can do any type of function bound with any type of complexity analysis

Insertion Sort:

$\Omega(n^2)$ (worst case)
$O(n)$ (best case)