Efficiency

- Our correct TSP algorithm was incredibly slow
- Basically slow no matter what computer you have
- We would like a general theory of “efficiency” that is
 - Simple
 - Relatively independent of changing technology
 - But still useful for prediction - “theoretically bad” algorithms should be bad in practice and vice versa (usually)

Measuring efficiency:
The RAM model

- RAM = Random Access Machine
- Time \(\approx \) # of instructions executed in an ideal assembly language
 - each simple operation (+, *, -, =, if, call) takes one time step
 - each memory access takes one time step
- No bound on the memory

We left out things but...

- Things we’ve dropped
 - memory hierarchy
 - disk, caches, registers have many orders of magnitude differences in access time
 - not all instructions take the same time in practice
- However,
 - the RAM model is useful for designing algorithms and measuring their efficiency
 - one can usually tune implementations so that the hierarchy etc. is not a huge factor
Complexity analysis

- Problem size \(n \)
 - **Worst-case complexity**: \(\max \) # steps algorithm takes on any input of size \(n \)
 - **Best-case complexity**: \(\min \) # steps algorithm takes on any input of size \(n \)
 - **Average-case complexity**: \(\text{avg} \) # steps algorithm takes on inputs of size \(n \)

Pros and cons:

- **Best-case**
 - unrealistic overselling
 - can "cheat": tune algorithm for one easy input
- **Worst-case**
 - a fast algorithm has a comforting guarantee
 - no way to cheat by hard-coding special cases
 - maybe too pessimistic
- **Average-case**
 - over what probability distribution?
 - different people may have different average problems

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average-Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions...

General Goals

- Characterize *growth rate* of run time as a function of problem size, up to a *constant factor*
- Why not try to be more precise?
 - Technological variations (computer, compiler, OS, ...) easily 10x or more
 - Being more precise is a ton of work
 - A key question is "scale up": if I can afford to do it today, how much longer will it take when my business problems are twice as large? (E.g. today: \(cn^2 \), next year: \(c(2n)^2 = 4cn^2 \): 4 x longer.)
Complexity

• The complexity of an algorithm associates a number $T(n)$, the best/worst/average-case time the algorithm takes, with each problem size n.

• Mathematically,
 – $T: \mathbb{N}^+ \rightarrow \mathbb{R}^+$
 – that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

O-notation etc

• Given two functions f and $g: \mathbb{N} \rightarrow \mathbb{R}$
 – $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ so that $c \ g(n)$ is eventually always $\geq f(n)$
 – $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ so that $c \ g(n)$ is eventually always $\leq f(n)$
 – $f(n)$ is $\Theta(g(n))$ if there are constants c_1 and $c_2 > 0$ so that eventually always $c_1 g(n) \leq f(n) \leq c_2 g(n)$
Examples

- $10n^2-16n+100$ is $O(n^2)$ also $O(n^3)$
 - $10n^2-16n+100 \leq 11n^2$ for all $n \geq 10$
- $10n^2-16n+100$ is $\Omega(n^2)$ also $\Omega(n)$
 - $10n^2-16n+100 \geq 9n^2$ for all $n \geq 16$
 - Therefore also $10n^2-16n+100$ is $\Theta(n^2)$
- $10n^2-16n+100$ is not $O(n)$ also not $\Omega(n^3)$

“One-Way Equalities”

- “2 + 2 is 4” vs $2 + 2 = 4$ vs $4 = 2 + 2$
- “Every dog is a mammal” vs “Every mammal is a dog”
- $2n^2 + 5$ is $O(n^3)$ vs $2n^2 + 5 = O(n^3)$ vs $O(n^3) = 2n^2 + 5$ FALSE
- OK to put big-O in R.H.S. of equality, but not left; better to avoid both.

Domination

- $f(n)$ is $o(g(n))$ iff $\lim_{n \to \infty} f(n)/g(n)=0$
 - that is $g(n)$ dominates $f(n)$
- If $\alpha \leq \beta$ then n^α is $O(n^\beta)$
- If $\alpha < \beta$ then n^α is $o(n^\beta)$
- Note: if $f(n)$ is $\Theta(g(n))$ then it cannot be $o(g(n))$

Working with O-Ω-Θ notation

- Claim: For any a, $b>1$ $\log_a n$ is $\Theta(\log_b n)$
 - $\log_a n = \log_b n \log_b a$ so letting $c = \log_b a$ we get that $\log_a n = \log_b n \cdot c$ so $\Theta(\log_b n)$
- Claim: For any a, and $b\geq 0$, $(n+a)^b$ is $\Theta(n^b)$
 - $(n+a)^b \leq (2n)^b$ for $n \geq |a|$
 - $= 2^{bn^b} = cn^b$ for $c=2^b$ so $(n+a)^b$ is $O(n^b)$
 - $(n+a)^b \geq (n/2)^b$ for $n \geq 2|a|$ (even if $a < 0$)
 - $= 2^{-b}n^b = c'n^b$ for $c'=2^{-b}$ so $(n+a)^b$ is $\Omega(n^b)$
Working with little-o

- $n^2 = o(n^3)$ [Use algebra]:
 \[
 \lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} \frac{1}{n} = 0
 \]

- $n^3 = o(e^n)$ [Use L'Hospital's rule 3 times]:
 \[
 \lim_{n \to \infty} \frac{n^3}{e^n} = \lim_{n \to \infty} \frac{3n^2}{e^n} = \lim_{n \to \infty} \frac{6n}{e^n} = \lim_{n \to \infty} \frac{6}{e^n} = 0
 \]

Big-Theta, etc. not always “nice”

- $f(n) = \begin{cases} n^2, & n \text{ even} \\ n, & n \text{ odd} \end{cases}$

- $f(n) = \Theta(n^2)$ for any a.

 Fortunately, such nasty cases are rare

A Possible Misunderstanding?

- We have looked at
 - type of complexity analysis
 - worst-, best-, average-case
 - types of function bounds
 - O, Ω, Θ

- These two considerations are independent of each other
 - one can do any type of function bound with any type of complexity analysis