More History

- 1930’s
 - What is (is not) computable
- 1960/70’s
 - What is (is not) feasibly computable
- Goal
 - A (largely) technology independent theory of time required by algorithms
- Key modeling assumptions/approximations
 - Asymptotic (Big-O), worst case is revealing
 - Polynomial, exponential time – qualitatively different

Another view of Poly vs Exp

Next year’s computer will be 2x faster. If I can solve problem of size N_0 today, how large a problem can I solve in the same time next year?

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Increase</th>
<th>Example</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n)$</td>
<td>$n_0 \rightarrow 2n_0$</td>
<td>10^{12}</td>
<td>2×10^{12}</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>$n_0 \rightarrow \sqrt{2} n_0$</td>
<td>10^6</td>
<td>1.4×10^6</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>$n_0 \rightarrow 3\sqrt{2} n_0$</td>
<td>10^4</td>
<td>1.25×10^4</td>
</tr>
<tr>
<td>$2^{n/10}$</td>
<td>$n_0 \rightarrow n_0 + 10$</td>
<td>400</td>
<td>410</td>
</tr>
<tr>
<td>2^n</td>
<td>$n_0 \rightarrow n_0 + 1$</td>
<td>40</td>
<td>41</td>
</tr>
</tbody>
</table>

Polynomial versus exponential

- We’ll say any algorithm whose run-time is
 - Polynomial is good
 - Bigger than polynomial is bad
- Note – of course there are exceptions:
 - n^{100} is bigger than $(1.001)^n$ for most practical values of n but usually such run-times don’t show up
 - There are algorithms that have run-times like $O(2^{n/2})$ and these may be useful for small input sizes, but they’re not too common either

Some Convenient Technicalities

- ”Problem” – the general case
 - Ex: The Clique Problem: Given a graph G and an integer k, does G contain a k-clique?
- ”Problem Instance” – the specific cases
 - Ex: Does $\square \bigcirc$ contain a 4-clique? (no)
 - Ex: Does $\square \bigcirc$ contain a 3-clique? (yes)
- Decision Problems – Just Yes/No answers
- Problems as Sets of ”Yes” Instances
 - Ex: CLIQUE = { $(G,k) \mid G$ contains a k-clique }
Decision problems
Computational complexity usually analyzed using decision problems
- answer is just 1 or 0 (yes or no).

Why?
- much simpler to deal with
- deciding whether \(G \) has a k-clique, is certainly no harder than finding a k-clique in \(G \), so a lower bound on deciding is also a lower bound on finding
- Less important, but if you have a good decider, you can often use it to get a good finder. (Ex.: does \(G \) still have a k-clique after I remove this vertex?)

Computational Complexity
Classify problems according to the amount of computational resources used by the best algorithms that solve them

Recall:
- worst-case running time of an algorithm:
 - max # steps algorithm takes on any input of size \(n \)
Define:
- \(\text{TIME}(f(n)) \) to be the set of all decision problems solved by algorithms having worst-case running time \(O(f(n)) \)

Polynomial time
Define \(P \) (polynomial-time) to be
- the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

- \(P = \bigcup_{k \geq 0} \text{TIME}(n^k) \)

Beyond \(P \)?
There are many natural, practical problems for which we don’t know any polynomial-time algorithms
- e.g. decisionTSP:
 - Given a weighted graph \(G \) and an integer \(k \), does there exist a tour that visits all vertices in \(G \) having total weight at most \(k \)?

Solving TSP given a solution to decisionTSP
Use binary search and several calls to decisionTSP to figure out what the exact total weight of the shortest tour is.
- Upper and lower bounds to start are \(n \) times largest and smallest weights of edges, respectively
- Call \(W \) the weight of the shortest tour.
Now figure out which edges are in the tour
- For each edge \(e \) in the graph in turn, remove \(e \) and see if there is a tour of weight at most \(W \) using decisionTSP
 - if not then \(e \) must be in the tour so put it back

More examples
Independent-Set:
- Given a graph \(G=(V,E) \) and an integer \(k \), is there a subset \(U \) of \(V \) with \(|U| \geq k \) such that no two vertices in \(U \) are joined by an edge.

Clique:
- Given a graph \(G=(V,E) \) and an integer \(k \), is there a subset \(U \) of \(V \) with \(|U| \geq k \) such that every pair of vertices in \(U \) is joined by an edge.
Satisfiability

- Boolean variables x_1, \ldots, x_n
 - taking values in $\{0, 1\}$: 0=false, 1=true
- Literals
 - x_i or $\neg x_i$ for $i=1, \ldots, n$
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses

CNF formula example

- $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12}) \land (x_2 \lor \neg x_4 \lor x_7 \lor x_3)$

If there is some assignment of 0’s and 1’s to the variables that makes it true then we say the formula is satisfiable

- the one above is, the following isn’t
- $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$

Satisfiability: Given a CNF formula F, is it satisfiable?

More History – As of 1970

- Many of the above problems had been studied for decades
- All had real, practical applications
- *None* had poly time algorithms; exponential was best known
- But, it turns out they all have a very deep similarity under the skin

Common property of these problems

- There is a special piece of information, a short hint or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This hint might be very hard to find
- e.g.
 - DecisionTSP: the tour itself,
 - Independent-Set, Clique: the set U
 - Satisfiability: an assignment that makes F true.

The complexity class \textbf{NP}

- \textbf{NP} consists of all decision problems where
 - You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) hint
 - And
 - No hint can fool your polynomial time verifier into saying YES for a NO instance

More Precise Definition of \textbf{NP}

- A decision problem is in \textbf{NP} iff there is a polynomial time procedure $v(\ldots)$, and an integer k such that
 - for every YES problem instance x there is a hint h with $|h| \leq |x|^k$ such that $v(x,h) = \text{YES}$ and
 - for every NO problem instance x there is *no* hint h with $|h| \leq |x|^k$ such that $v(x,h) = \text{YES}$
Example: CLIQUE is in NP

procedure v(x,h)
 if
 x is a well-formed representation of a graph G = (V, E) and an integer k,
 and
 h is a well-formed representation of a k vertex subset U of V,
 and
 U is a clique in G,
 then output "YES"
 else output "I'm unconvincited"

Is it correct?

For every x = (G,k) such that G contains a k-clique, there is a hint h that will cause v(x,h) to say YES, namely h = a list of the vertices in such a k-clique
and
No hint can fool v into saying yes if either x isn’t well-formed (the uninteresting case) or if x = (G,k) but G does not have any cliques of size k (the interesting case)

Keys to showing that a problem is in NP

What’s the output? (must be YES/NO)
What’s the input? Which are YES?
For every given YES input, is there a hint that would help?
 OK if some inputs need no hint
For any given NO input, is there a hint that would trick you?

Solving NP problems without hints

The only obvious algorithm for most of these problems is brute force:
 try all possible hints and check each one to see if it works.
 Exponential time:
 2^n truth assignments for n variables
 n! possible TSP tours of n vertices
 \(^k\) possible k element subsets of n vertices
 etc.

What We Know

Nobody knows if all problems in NP can be done in polynomial time, i.e. does P=NP?
 one of the most important open questions in all of science.
 huge practical implications
Every problem in P is in NP
 one doesn’t even need a hint for problems in P so just ignore any hint you are given
Every problem in NP is in exponential time

P and NP
P vs NP

Theory
- P = NP?
- Open Problem!
- I bet against it

Practice
- Many interesting, useful, natural, well-studied problems known to be NP-complete
- With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

More Connections

Some Examples in NP
- Satisfiability
- Independent-Set
- Clique
- Vertex Cover
- All hard to solve; hints seem to help on all
- Very surprising fact:
 - Fast solution to any gives fast solution to all!

NP-hardness & NP-completeness

Some problems in NP seem hard
- people have looked for efficient algorithms for them for hundreds of years without success

However
- nobody knows how to prove that they are really hard to solve, i.e. \(P \neq NP \)

NP-hardness & NP-completeness

Alternative approach
- show that they are at least as hard as any problem in NP

Rough definition:
- A problem is NP-hard iff it is at least as hard as any problem in NP
- A problem is NP-complete iff it is both
 - NP-hard
 - in NP

P and NP

Polynomial Time Reduction

\(L \leq_p R \) if there is a poly time algorithm for \(L \) assuming a poly time subroutine for \(R \)

Thus, fast alg for \(R \) implies fast alg for \(L \)
- If you can prove there is no fast alg for \(L \), then that proves there is no fast alg for \(R \)
What to do? Hopeless?

- Heuristics: perhaps there’s an alg that’s:
 - usually fast, and/or
 - usually succeeds
- Approximation Algorithms: Would you settle for an answer within 1% of optimal? 10% ? 10x ?

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there’s worse:
 - Some problems provably require exponential time.
 - Ex: Does P halt on x in 2^n steps?
 - Some require 2^n, 2^{2^n}, $2^{2^{2^n}}$... steps
 - And of course, some are just plain uncomputable

Summary

- Big-O – good
- P – good
- Exp – bad
- Hints help? NP
- NP-hard, NP-complete – bad (I bet)