A Brief History of Ideas

- From Classical Greece, if not earlier, "logical thought" held to be a somewhat mystical ability
- Mid 1800's: Boolean Algebra and foundations of mathematical logic created possible "mechanical" underpinnings
- 1930's: Gödel, Church, Turing, et al. prove it's impossible

What's an "Algorithm"?

- "Input": finite (but arbitrarily long) sequence of symbols from a fixed, finite set (e.g., {0,1}, or {a,b,c}, or "ascii")
- "Configuration": a finite (but arbitrarily large) description of intermediate results in the computation
- "Operations": a fixed set of possible operations, each "obviously" mechanical, defined by how they change one config into another
- "Program/Algorithm": finite list of operations (and rules for choosing the order in which they are executed.)

Examples

C/C++/etc.:

```c
main()
{
  int i; // really an integer
  for (i=0;i<10;i++)
  {
    ...
  }
  return 0;
}
```

The Turing Machine
(Alan M. Turing, 1912-54)

```
0 1 1 0 1 0 0 ...
```

- a: 0 → 0/L/a; 1 → 0/R/c
- b: 0 → 0/R/b; 1 → 1/R/a
- c: ...
- z: ...

Turing Machines

- Church-Turing Thesis
 - Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine
- Evidence
 - Huge numbers of equivalent models to TM's based on radically different ideas

Universal Turing Machine

- A Turing machine interpreter U
 - On input the code of a program (or Turing machine) P and an input x, U outputs the same thing as P does on input x
- Basis for modern stored-program computer
- Notation:
 - We'll write <P> for the code of program P and <P,x> for the pair of the program code and input
Halting Problem
- **Given**: the code of a program P and an input x for P, i.e. given $<P,x>$
- **Output**: 1 if P halts on input x and 0 if P does not halt on input x
- **Theorem (Turing)**: There is no program that solves the halting problem
 “The halting problem is undecidable”

Diagonal construction
- Suppose there is a program H solving the halting Problem
- Now define a new program D such that
 - D on input x:
 - runs H checking if the program P whose code is x halts when given x as input; i.e. does P halt on input $<P>$
 - if H outputs 1 then D goes into an infinite loop
 - if H outputs 0 then D halts.

Code for D assuming subroutine for H
- **Function** $D(x)$:
 - if $H(x,x)=1$ then
 - **while** (true); /* loop forever */
 - else
 - **no-op**; /* do nothing and halt */
 - **endif**

Finishing the argument
- Suppose D has code $<D>$ then
 - D halts on input $<D>$
 - iff (by definition of D)
 - H outputs 0 given program D and input $<D>$
 - iff (by definition of H)
 - D runs forever on input $<D>$
 - **Contradiction!**

Undecidability of the Halting Problem (alternate proof)
- Suppose that there is a program H that computes the answer to the Halting Problem
- We'll build a table with all the possible programs down one side and all the possible inputs along the other and do a diagonal flip to produce a contradiction
Want to create a new program whose halting properties are given by the flipped diagonal

Relating hardness of problems
- We have one problem that we know is impossible to solve
 - Halting problem
- Showing this took serious effort
- We’d like to use this fact to derive that other problems are impossible to solve
 - don’t want to go back to square one to do it

Property that makes this correct
- It better be the case that no matter what x is
 \[L(x) = R(y) \]
 i.e. \[L(x) = R(T(x)) \]
- T is called a reduction from problem L to problem R
- If such a T exists we write \(L \leq R \).

Reduction \(L \leq R \)

Intuition: L is at least as easy as R or, equivalently, R is at least as hard as L
Example: BFS ≤ Shortest-Path

- **BFS**: Given a graph G and a vertex v, output the BFS tree of G started at v
- **Shortest-Paths**: Given a graph G with non-negative weights on its edges, and a vertex v output the shortest-path tree of G from v
- **Reduction T**: Given G and v, create weights for all edges in G giving each edge weight 1:
 \[
 \langle G, v \rangle \rightarrow \langle G, \text{weights}, v \rangle
 \]

Properties of reductions

- Given that I have any reduction T such that \(L(x) = R(T(x)) \)
 - If I had a program that solves R then I would have a program that solves L
 - Therefore
 - If there is no program that solves L then there cannot be any program that solves R!
 - (statement is just equivalent to one above)

Another undecidable problem

- **1's problem**: Given the code of a program M does M output 1 on input 1? If so, answer 1 else answer 0.
- **Claim**: the 1's problem is undecidable
- **Proof**: by reduction from the Halting Problem

What we want for the reduction

- **Halting problem** takes as input a pair \(<P,x>\)
- **1's problem** takes as input \(<M>\)
 - Given \(<P,x>\) can we create an \(<M>\) so that M outputs 1 on input 1 exactly when P halts on input x?

Yes

- Here is all that we need to do to create M
 - modify the code of P so that instead of reading x, x is hard-coded as the input to P and get rid of all output statements in P
 - add a new statement at the end of P that outputs 1.
- We can write another program T that can do this transformation from \(<P,x>\) to \(<M>\)

How we might do the hard-coding if the code were in C?

- Include an assignment at the start that would place the characters in string x in some array A.
- Replace all scanf's in P with calls to a new function scanA that simulates scanf but gets its data from array A.
- Replace all printf's in P by printB which doesn't actually do anything.
Finishing things off

Therefore we get a reduction
- Halting Problem \leq 1's problem

Since there is no program solving the Halting Problem there must be no program solving the 1's problem.

Why the name reduction?

- Weird: it maps an easier problem into a harder one
- Same sense as saying Maxwell reduced the problem of analyzing electricity & magnetism to solving partial differential equations
 - solving partial differential equations in general is a much harder problem than solving E&M problems

Quick lessons

- Don't rely on the idea of improved compilers and programming languages to eliminate major programming errors
 - truly safe languages can't possibly do general computation
- Document your code!!!!
 - there is no way you can expect someone else to figure out what your program does with just your code ...since....in general it is provably impossible to do this!