CSE 417: Algorithms and Computational Complexity

Winter 2002
Graphs and Graph Algorithms
Larry Ruzzo

Undirected Graph $G = (V, E)$

Directed Graph $G = (V, E)$

Representing Graph $G = (V, E)$

- **n vertices, m edges**
 - **Vertex set** $V = \{v_1, ..., v_n\}$
 - **Adjacency Matrix** A
 - $A[i, j] = 1$ iff $(v_i, v_j) \in E$
 - Space is n^2 bits
 - **Advantages:**
 - $O(1)$ test for presence or absence of edges.
 - Compact in packed binary form for large m
 - **Disadvantages:** inefficient for sparse graphs

Representing Graph $G = (V, E)$

- **n vertices, m edges**
 - **Adjacency List:**
 - $O(n + m)$ words
 - $O(\log n)$ bits each
 - **Advantages:**
 - Compact for sparse graphs

Representing Graph $G = (V, E)$

- **n vertices, m edges**
 - **Adjacency List:**
 - $O(n + m)$ words
 - $O(\log n)$ bits each
 - **Back- and cross pointers more work to build, but allow easier traversal and deletion of edges**
 - **usually assume this format**
Graph Traversal
- Learn the basic structure of a graph
- Walk from a fixed starting vertex \(v \) to find all vertices reachable from \(v \)

Three states of vertices
- undiscovered
- discovered
- fully-explored

Breadth-First Search
- Completely explore the vertices in order of their distance from \(v \)
- Naturally implemented using a queue

BFS(\(v \))
Global initialization: mark all vertices "undiscovered"

```plaintext
BFS(v)
mark v "discovered"
queue = v
while queue not empty
    u = remove_first(queue)
    for each edge \{u,x\}
        if (x is undiscovered)
            mark x discovered
            append x on queue
        mark u completed
```

Exercise: modify code to number vertices & compute level numbers

BFS(\(v \))
Queue: 1

BFS(\(v \))
Queue: 2 3
BFS(v)

Queue: 3 4

Queue: 4 5 6 7

Queue: 5 6 7 8 9

Queue: 8 9 10 11

Queue: 10 11 12 13

Queue: 12 13
BFS analysis

- Each edge is explored once from each end-point (at most)
- Each vertex is discovered by following a different edge
- Total cost $O(m)$ where m= number of edges

Properties of (Undirected) BFS(v)

- BFS(v) visits x if and only if there is a path in G from v to x.
- Edges into then-undiscovered vertices define a tree – the “breadth first spanning tree” of G
- Level i in this tree are exactly those vertices u such that the shortest path (in G, not just the tree) from the root v is of length i.
- All non-tree edges join vertices on the same or adjacent levels

Graph Search Application: Connected Components

- Want to answer questions of the form: given vertices u and v, is there a path from u to v?
- Idea: create array A such that $A[u]$ = smallest numbered vertex that is connected to u

Q: Why not create 2-d array $\text{Path}[u,v]$?

Graph Search Application: Connected Components

- initial state: all v undiscovered

 for $v=1$ to n do

 if state(v) != fully-explored then
 BFS(v):
 setting $A[u]$ ← v for each u found (and marking u discovered/fully-explored)
 endif
 endfor

- Total cost: $O(n+m)$

 each vertex an each edge is touched a constant number of times

 works also with DFS

BFS Application: Shortest Paths

- Tree gives shortest paths from start vertex
- can label by distances from start

Depth-First Search

- Follow the first path you find as far as you can go
- Back up to last unexplored edge when you reach a dead end, then go as far you can
- Naturally implemented using recursive calls or a stack
DFS(v)

Global Initialization: mark all vertices "undiscovered"
DFS(v)
 mark v "discovered"
 stack = v
 while stack not empty
 u = pop(stack)
 for each edge (u,x)
 if (x is undiscovered)
 mark x discovered
 push x
 mark u completed

Exercise 1: recode recursively
Exercise 2: modify to compute vertex numbering

DFS(v) – Recursive version

Global Initialization:
 mark all vertices v "undiscovered" via v.dfs# = -1
dfscounter = 0
DFS(v)
 v.dfs# = dfscounter++ // mark v "discovered"
 for each edge (v,x)
 if (x.dfs# = -1) // tree edge (x previously undiscovered)
 DFS(x)
 else … // code for back-, fwd-, parent,
 // edges, if needed
 // mark v "completed," if needed
Properties of (Undirected) DFS(v)

- Like BFS(v):
 - DFS(v) visits x if and only if there is a path in G from v to x (through previously unvisited vertices)
 - Edges into then-undiscovered vertices define a tree – the “depth first spanning tree” of G

- Unlike the BFS tree:
 - the DF spanning tree isn’t minimum depth
 - its levels don’t reflect min distance from the root
 - non-tree edges never join vertices on the same or adjacent levels

- BUT...

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

- No cross edges!
Application: Articulation Points

- A node in an undirected graph is an articulation point iff removing it disconnects the graph.
- Articulation points represent vulnerabilities in a network – single points whose failure would split the network into 2 or more disconnected components.

Articulation Points

- Root node is an articulation point iff it has more than one child.
- Leaf is never an articulation point.
- Every interior vertex of a tree is an articulation point.
- Non-tree edges eliminate articulation points.
- Root node is an articulation point iff it has more than one child.
- No non-tree edge goes above u from a subtree below some child of u.

Articulation Points from DFS

- Definition: LOW(v) is the lowest dfs# of any vertex that is either in the dfs subtree rooted at v (including v itself) or connected to a vertex in that subtree by a back edge.
- Key idea 1: if some child x of v has LOW(x) ≥ dfs#(v) then v is an articulation point.
- Key idea 2: LOW(v) = min { LOW(w) | w a child of v } ∪ { dfs#(x) | {v,x} is a back edge from v }.

Articulation Points: the "LOW" function

- Draw a graph, ~ 10 nodes, A-J.
- Redraw as via DFS.
- Add dfs#s & tree/back edges (solid/dashed).
- Find cycles.
- Give alg to find cycles via dfs; does G have any?
- Find articulation points.
- What do cycles have to do with articulation points?
- Alg to find articulation points via DFS???
DFS(v) for Finding Articulation Points

- Global initialization: v.dfs# = -1 for all v.
- DFS(v)
 - v.dfs# = dfscounter++ // initialization
 - for each edge (v,x)
 - if (x.dfs# == -1) // x is undiscovered
 - DFS(x)
 - v.low = min(v.low, x.low)
 - else if (x is not v's parent)
 - v.low = min(v.low, x.dfs#)

Equiv: "if (v,x) is a back edge"

Why?

Articulation Points

- Except for root, Why?