CSE 417: Algorithms and Computational Complexity

6: Dynamic Programming, III
Longest Increasing Subseq.

Winter 2002
Instructor: W. L. Ruzzo

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that number of different parameters in the recursive algorithm is "small" (e.g., bounded by a low-degree polynomial)
- Specify an order of evaluation for the recurrence so that already have the partial results ready when you need them.

Longest Increasing Subsequence

Given a sequence of integers $s_1, ..., s_n$ find a subsequence $s_{i_1} < s_{i_2} < ... < s_{i_k}$ with $i_1 < ... < i_k$ so that k is as large as possible.

- e.g. Given 9,5,2,8,7,3,1,6,4 as input,
 - possible increasing subsequence is 5,7
 - better is 2,3,6 or 2,3,4 (either or which would be a correct output to our problem)

Find recursive algorithm

- Solve sub-problem on $s_1, ..., s_{n-1}$, and then try to extend using s_n
- Two cases:
 - s_n is not used
 - answer is the same answer as on $s_1, ..., s_{n-1}$
 - s_n is used
 - answer is s_n preceded by the longest increasing subsequence in $s_1, ..., s_{n-1}$ that ends in a number smaller than s_n

Refined recursive idea (stronger notion of subproblem)

- Suppose that we knew for each $i < n$ the longest increasing subsequence in $s_1, ..., s_n$ that ends in s_i.
- $i = n - 1$ is just the $n-1$ size sub-problem we tried before.
- Now to compute value for $i = n$ find
 - s_n preceded by the maximum over all $i < n$ such that $s_i < s_n$ of the longest increasing subsequence ending in s_i.
 - First find the best length rather than trying to actually compute the sequence itself.

Recurrence

- Let $L[i]$ = length of longest increasing subsequence in $s_1, ..., s_i$ that ends in s_i.
- $L[i] = 1 + \max\{L[j] : i < j$ and $s_i < s_j\}$ (where max of an empty set is 0)
- Length of longest increasing subsequence:
 - $\max\{L[i] : 1 \leq i \leq n\}$
Computing the actual sequence

- For each j, we computed
 \[L[j] = 1 + \max\{L[i] : i < j \text{ and } s_i < s_j \} \]
 (where max of an empty set is 0)
- Also maintain $P[j]$ the value of the i that
 achieved that max
 - this will be the index of the predecessor of s_j in a
 longest increasing subsequence that ends in s_j
 - by following the $P[i]$ values we can reconstruct the
 whole sequence in linear time.

Longest Increasing Subsequence Algorithm

- for $j = 1$ to n
 - $L[j] \leftarrow 1$
 - $P[j] \leftarrow 0$
 - for $i = 1$ to $j - 1$
 - if $(s_i < s_j \text{ and } L[i] + 1 > L[j])$
 - $P[j] \leftarrow i$
 - $L[j] \leftarrow L[i] + 1$
 - endfor
- Now find j such that $L[j]$ is largest and walk backwards
 through $P[j]$ pointers to find the sequence

Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>90</td>
<td>50</td>
<td>20</td>
<td>80</td>
<td>70</td>
<td>30</td>
<td>10</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>l_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>