O-notation etc

- Given two functions \(f \) and \(g : \mathbb{N} \rightarrow \mathbb{R} \)
 - \(f(n) \) is \(O(g(n)) \) iff there is a constant \(c > 0 \) so that \(c \ g(n) \) is eventually always \(\geq f(n) \)
 - \(f(n) \) is \(\Omega(g(n)) \) iff there is a constant \(c > 0 \) so that \(c \ g(n) \) is eventually always \(\leq f(n) \)
 - \(f(n) \) is \(\Theta(g(n)) \) iff there are constants \(c_1 \) and \(c_2 > 0 \) so that eventually always \(c_1 g(n) \leq f(n) \leq c_2 g(n) \)

Example

- Mergesort
 1. on a problem of size at least 2
 a. Sort the first half of the numbers
 b. Sort the second half of the numbers
 c. Merge the two sorted lists
 2. on a problem of size 1 do nothing

Cost of Merge

- Given two lists to merge size \(n \) and \(m \)
 1. Maintain pointer to head of each list
 2. Move smaller element to output and advance pointer
 3. \(n + m \) comparisons

Worst case \(n + m - 1 \) comparisons
Best case \(\min(n,m) \) comparisons

Recurrence relation for Mergesort

- In total including other operations let’s say each merge costs 3 per element output
 1. \(T(n) = T\left(\left\lfloor n/2 \right\rfloor \right) + T\left(\left\lceil n/2 \right\rceil \right) + 3n \) for \(n \geq 2 \)
 2. \(T(1) = 1 \)
- Can use this to figure out \(T \) for any value of \(n \)
 1. \(T(5) = T(3) + T(2) + 3 \times 5 \)
 \(= (T(2) + T(1) + 3 \times 3) + (T(1) + T(1) + 3 \times 2) + 15 \)
 \(= (T(1) + T(1) + 6) + 1 + 9 + (1 + 1 + 6) + 15 \)
 \(= 8 + 10 + 8 + 15 = 41 \)
Insertion Sort

For i=2 to n do
 j ← i
 while (j>1 & X[j] > X[j-1]) do
 swap X[j] and X[j-1]
 i.e., For i=2 to n do
 Insert X[i] in the sorted list X[1],...,X[i-1]

Recurrence relation for Insertion Sort

Let $T(n,i)$ be the worst case cost of creating list that has first i elements sorted out of n.

We want $T(n,n)$

The insertion of $X[i]$ makes up to $i-1$ comparisons in the worst case

$T(n,i)=T(n,i-1)+i-1$ for $i>1$

$T(n,1)=0$ since a list of length 1 is always sorted

Therefore $T(n,n)=n(n-1)/2$

Solving recurrence relations

e.g. $T(n)=T(n-1)+f(n)$ for $n \geq 1$

$T(0)=0$

solution is $T(n)=\sum_{i=1}^{n} f(i)$

Insertion sort: $T_n(i)=T_n(i-1)+i-1$

so $T_n(n)=\sum_{i=1}^{n} (i-1) = n(n-1)/2$

Arithmetic Series

$S=1+2+3+...+(n-1)$

$S=(n-1)+(n-2)+(n-3)+...+1$

$2S=n+n+n+...+n$ (n-1 terms)

$2S=n(n-1)$ so $S=n(n-1)/2$

Works generally when $f(i)=ai+b$ for all i

Sum = average term size x # of terms

Complexity analysis

Problem size n

Worst-case complexity: max # steps algorithm takes on any input of size n

Best-case complexity: min # steps algorithm takes on any input of size n

Average-case complexity: avg # steps algorithm takes on inputs of size n

Why Worst-Case Analysis?

Appropriate for time-critical applications, e.g. avionics

Unlike Average-Case, no debate about what the right definition is

Analysis often easier

Result is often representative of "typical" problem instances

Of course there are exceptions…