Complexity analysis

- Problem size n
 - Worst-case complexity: \max # steps algorithm takes on any input of size n
 - Best-case complexity: \min # steps algorithm takes on any input of size n
 - Average-case complexity: avg # steps algorithm takes on inputs of size n

Complexity

- The complexity of an algorithm associates a number $T(n)$, the best/worst/average-case time the algorithm takes, with each problem size n.

- Mathematically, $T: \mathbb{N}^+ \rightarrow \mathbb{R}^+$ that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

O-notation etc

- Given two functions f and $g: \mathbb{N} \rightarrow \mathbb{R}$
 - $f(n)$ is $O(g(n))$ iff there is a constant $c > 0$ so that $c \cdot g(n)$ is eventually always $\geq f(n)$
 - $f(n)$ is $\Omega(g(n))$ iff there is a constant $c > 0$ so that $c \cdot g(n)$ is eventually always $\leq f(n)$
 - $f(n)$ is $\Theta(g(n))$ iff there are constants c_1 and $c_2>0$ so that eventually always $c_1g(n) \leq f(n) \leq c_2g(n)$
Examples

- \(10n^2-16n+100\) is \(O(n^2)\) also \(O(n^3)\)
- \(10n^2-16n+100\) is also \(\Omega(n)\)
- \(10n^2-16n+100\) is \(\Theta(n^2)\) also \(\Omega(n^2)\)
- \(10n^2-16n+100\) is not \(O(n)\) also not \(\Omega(n^3)\)
- Note: I don’t use notation \(f(n)=O(g(n))\)

Domination

- \(f(n)\) is \(o(g(n))\) iff \(\lim_{n \to \infty} f(n)/g(n)=0\)
- that is \(g(n)\) dominates \(f(n)\)
- If \(\alpha \leq \beta\) then \(n^\alpha\) is \(O(n^\beta)\)
- If \(\alpha < \beta\) then \(n^\alpha\) is \(o(n^\beta)\)
- Note: if \(f(n)\) is \(\Theta(g(n))\) then it cannot be \(o(g(n))\)

Working with \(O-\Omega-\Theta\) notation

- Claim: For any \(a, b > 1\) \(\log_a n\) is \(\Theta(\log_b n)\)
- \(\log_a n=\log_b n \cdot \log_a b\) so letting \(c=\log_b a\) we get that \(\log_a n=\log_b n \cdot c\)
- Claim: For any \(a\) and \(b > 0\), \((n+a)^b\) is \(\Theta(n^b)\)
- \((n+a)^b \leq (2n)^b\) for \(n \geq a\)
- \(=2^n b = c\cdot n^b\) for \(c=2^b\) so \((n+a)^b\) is \(O(n^b)\)
- \((n+a)^b \geq (n/2)^b\) for \(n \geq 2a\)
- \(=2^{-b}n^b = c\cdot n^b\) for \(c=2^{-b}\) so \((n+a)^b\) is \(\Omega(n^b)\)

General algorithm design paradigm

- Find a way to reduce your problem to one or more smaller problems of the same type
- When problems are really small solve them directly

Example

- Mergesort
 - on a problem of size at least 2
 - Sort the first half of the numbers
 - Sort the second half of the numbers
 - Merge the two sorted lists
 - on a problem of size 1 do nothing

Cost of Merge

- Given two lists to merge size \(n\) and \(m\)
 - Maintain pointer to head of each list
 - Move smaller element to output and advance pointer
 - Worst case \(n+m-1\) comparisons
 - Best case \(\min(n,m)\) comparisons
Recurrence relation for Mergesort

In total including other operations let’s say each merge costs 3 per element output

\[T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + 3n \quad \text{for } n \geq 2 \]

\[T(1) = 1 \]

Can use this to figure out T for any value of n

\[T(5) = T(3) + T(2) + 3 \times 5 \]
\[= (T(2) + T(1) + 3 \times 3) + (T(1) + T(1) + 3 \times 2) + 15 \]
\[= (T(1) + T(1) + 6 + 1 + 9 + 1 + 1 + 6 + 15) \]
\[= 8 + 10 + 8 + 15 = 41 \]

Insertion Sort

For i=2 to n do

\[j \leftarrow i \]

while (j>1 & X[j] > X[j-1]) do

swap X[j] and X[j-1]

i.e., For i=2 to n do

Insert X[i] in the sorted list X[1],...,X[i-1]

May need to add extra conditions - Insertion Sort

Original problem

Input: x_1, ..., x_n with same values as a_1, ..., a_n

Desired output: x_1 \leq x_2 \leq ... \leq x_n containing same values as a_1, ..., a_n

Partial progress

x_1 \leq x_2 \leq ... \leq x_i, x_{i+1}, ..., x_n containing same values as a_1, ..., a_n

Recurrence relation for Insertion Sort

Let \(T(n, i) \) be the worst case cost of creating list that has first i elements sorted out of n.

We want \(T(n, n) \)

The insertion of X[i] makes up to i-1 comparisons in the worst case

\[T(n, i) = T(n, i-1) + (i-1) \quad \text{for } i>1 \]

\[T(n, 1) = 0 \] since a list of length 1 is always sorted

Therefore \(T(n, n) = n(n-1)/2 \) (next class)