Complexity analysis

- Problem size n
 - Worst-case complexity: \max # steps algorithm takes on any input of size n
 - Best-case complexity: \min # steps algorithm takes on any input of size n
 - Average-case complexity: \avg # steps algorithm takes on inputs of size n

The complexity of an algorithm associates a number $T(n)$, the best/worst/average-case time the algorithm takes, with each problem size n.

Mathematically,

- $T : \mathbb{N}^* \rightarrow \mathbb{R}^+$
- that is T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Why Worst-Case Analysis?

- Appropriate for time-critical applications, e.g. avionics
- Unlike Average Case, no debate about what the right definition is
- Analysis often easier
- Result is often representative of "typical" problem instances
- Of course there are exceptions…

Reading assignment

- Read Chapter 2 of *The ALGORITHM Design Manual*
O-notation etc

- Given two functions f and $g: \mathbb{N} \to \mathbb{R}$
 - $f(n) = O(g(n))$ if there is a constant $c > 0$ so that $f(n)$ is eventually always $\leq c g(n)$
 - $f(n) = \Omega(g(n))$ if there is a constant $c > 0$ so that $f(n)$ is eventually always $\geq c g(n)$
 - $f(n) = \Theta(g(n))$ if there is a constant $c > 0$ so that $f(n)$ is eventually always $\leq c g(n)$ and $\geq c g(n)$

Examples

- $10n^2 - 16n + 100$ is $O(n^2)$ also $O(n^3)$
- $10n^2 - 16n + 100 \leq 11n^2$ for all $n \geq 10$
- $10n^2 - 16n + 100 = \Omega(n)$ also $\Omega(n)$
- $10n^2 - 16n + 100 \geq 9n^2$ for all $n \geq 16$
- Therefore also $10n^2 - 16n + 100$ is $\Omega(n^2)$

- $10n^2 - 16n + 100$ is not $O(n)$ also not $\Omega(n^2)$

Note: I don’t use notation $f(n) = O(g(n))$

Working with O, Ω, Θ notation

- Claim: For any $a, b > 1$, $\log_a n$ is $\Theta(\log_b n)$
 - $\log_a n = \log_b n \cdot \log_b a$ so letting $c = \log_b a$ we get that $\log_a n \leq \log_b n \leq \log_a n$

- Claim: For any a and $b > 0$, $(n+a)^b$ is $\Theta(n^b)$
 - $(n+a)^b \leq (2n)^b$ for $n \geq |a|$
 - $2^n = c \cdot 2^n$ for $c \cdot 2^n$ so $(n+a)^b$ is $O(n^b)$
 - $(n+a)^b = (n/2)^b$ for $n \geq 2|a|$
 - $2^n a^n = c' \cdot n$ for $c' \cdot 2^n$ so $(n+a)^b$ is $\Omega(n^b)$

Complexity

Type of Complexity Analysis

- Alg A
- Different running time for each input string

Type of Bound

- $T(n)$ grows like $n \log n$
- Function mapping input length to running time

Complexity analysis overview

We have looked at

- Type of complexity analysis
 - Worst-case, best-case, average-case
- Types of function bounds
 - O, Ω, Θ

These two considerations are orthogonal to each other

- One can do any type of function bound with any type of complexity analysis

Examples

- $10n^2 - 16n + 100$ is $O(n^2)$
- $10n^2 - 16n + 100 \leq 11n^2$ for all $n \geq 10$
- $10n^2 - 16n + 100 = \Omega(n)$
- $10n^2 - 16n + 100 \geq 9n^2$ for all $n \geq 16$
- Therefore also $10n^2 - 16n + 100$ is $\Omega(n^2)$

- $10n^2 - 16n + 100$ is not $O(n)$ also not $\Omega(n^2)$

Note: I don’t use notation $f(n) = O(g(n))$
General algorithm design paradigm
- Find a way to reduce your problem to one or more smaller problems of the same type
- When problems are really small solve them directly

Example
- Mergesort
 - on a problem of size at least 2
 - Sort the first half of the numbers
 - Sort the second half of the numbers
 - Merge the two sorted lists
 - on a problem of size 1 do nothing

Cost of Merge
- Given two lists to merge size \(n \) and \(m \)
 - Maintain pointer to head of each list
 - Move smaller element to output and advance pointer
- \[\begin{array}{c|c}
\hline
\text{n} & \text{m} \\
\hline
\end{array} \]
- Worst case \(n+m-1 \) comparisons
 - Best case \(\min(n,m) \) comparisons

Recurrence relation for Mergesort
- In total including other operations let's say each merge costs 3 per element output
 - \(T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + 3n \) for \(n \geq 2 \)
 - \(T(1) = 1 \)
- Can use this to figure out \(T \) for any value of \(n \)
- \(T(5) = T(2) + T(2) + 3 \times 5 = 15 + 15 + 15 = 45 \)
- \(T(n) = 3n \log_2 n \)

Insertion Sort
- For \(i = 2 \) to \(n \) do
 - \(j \leftarrow i \)
 - while \(j > 1 \& X[j] > X[j-1] \) do
 - swap \(X[j] \) and \(X[j-1] \)
- i.e., For \(i = 2 \) to \(n \) do
 - Insert \(X[i] \) in the sorted list \(X[1], \ldots, X[i-1] \)

Recurrence relation for Insertion Sort
- Let \(T_a(i) \) be the worst case cost of creating list that has first \(i \) elements sorted out of \(n \).
- We want to know \(T_a(n) \)
 - The insertion of \(X[i] \) makes up to \(i-1 \) comparisons in the worst case
 - \(T_a(i) = T_a(i-1) + i-1 \) for \(i > 1 \)
 - \(T_a(1) = 0 \) since a list of length 1 is always sorted
 - Therefore \(T_a(n) = n(n-1)/2 \)
Solving recurrence relations
- e.g. \(T(n) = T(n-1) + f(n) \) for \(n \geq 1 \)
 \(T(0) = 0 \)
- solution is \(T(n) = \sum_{i=1}^{n} f(i) \)
- Insertion sort: \(T_n(i) = T_n(i-1) + i - 1 \)
- so \(T_n(n) = \sum_{i=1}^{n} (i - 1) = n(n-1)/2 \)

Arithmetic Series
- \(S = 1 + 2 + 3 + ... + (n-1) \)
- \(S = \frac{(n-1)n}{2} \)
- so \(S = n(n-1)/2 \)
- Works generally when \(f(i) = ai + b \) for all \(i \)
- Sum = average term size \(\times \) # of terms

Quick sort
- \(\text{QuickSort}(X, \text{left}, \text{right}) \)
 if \(\text{left} < \text{right} \)
 \(\text{split} = \text{Partition}(X, \text{left}, \text{right}) \)
 \(\text{QuickSort}(X, \text{left}, \text{split}-1) \)
 \(\text{QuickSort}(X, \text{split}+1, \text{right}) \)

Partition - two finger algorithm
- \(\text{Partition}(X, \text{left}, \text{right}) \)
 choose a random element to be a pivot and pull it out of the array, say at left end
 maintain two fingers starting at each end of the array
 slide them towards each other until you get a pair of elements where right finger has a smaller element and left finger has a bigger one (when compared to pivot)
 swap them and repeat until fingers meet
 put the pivot element where they meet

Partition - two finger algorithm
- \(\text{Partition}(X, \text{left}, \text{right}) \)
 swap \(X[\text{left}], X[\text{random(left, right)}] \)
 pivot \(\leftarrow X[\text{left}] \); \(L \leftarrow \text{left}; R \leftarrow \text{right} \)
 while \(L < R \) do
 while \((X[L] \leq \text{pivot} \&\& L < \text{right}) \) do
 \(L \leftarrow L+1 \)
 while \((X[R] > \text{pivot} \&\& R > \text{left}) \) do
 \(R \leftarrow R-1 \)
 if \(L > R \) then swap \(X[L], X[R] \)
 swap \(X[\text{left}], X[\text{right}] \)
 return \(R \)

In practice
- often choose pivot in fixed way as
 - middle element for small arrays
 - median of 1st, middle, and last for larger arrays
 - median of 3 medians of 3 (9 elements in all) for largest arrays

 four finger algorithm is better
 - also maintain two groups at each end of elements equal to the pivot
 - swap them all into middle at the end of Partition
 - equal elements are bad cases for two fingers
Quicksort Analysis

- Partition does n-1 comparisons on a list of length n
 - pivot is compared to each other element
- If pivot is ith largest then two sub-problems are of size i-1 and n-1
 - If pivot is always in the middle get
 \[T(n) = \frac{n}{2}\log_2 n + \text{better than Mergesort} \]
 - If pivot is always at the end get
 \[T(n) = T(n-1) + n-1 \] comparisons
 - \[T(n) = (n-1)/2 \] like Insertion Sort

Quicksort Analysis Average Case

- Recall
 - Partition does n-1 comparisons on a list of length n
- If pivot is ith largest then two sub-problems are of size i-1 and n-1
 - Pivot is equally likely to be any one of 1st through nth largest
 \[T(n) = n-1 + \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) \]

Quicksort analysis

\[T(n) = n-1 + \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i)) \]
\[= n-1 + \frac{2}{n} \sum_{i=1}^{n} T(i) + 2T(2) + \ldots + 2T(n-1) \]
\[= nT(n) = n(n-1) + 2T(1) + 2T(2) + \ldots + 2T(n-1) \]
\[= (n+1)T(n+1) = (n+1)n + 2T(1) + 2T(2) + \ldots + 2T(n) \]
\[\therefore (n+1)T(n+1) - nT(n) = 2T(n) + 2n \]
\[(n+1)T(n+1) = (n+2)T(n) + 2n \]
\[T(n+1) = T(n) + \frac{2n}{n+1} \]
\[\therefore T(n) = 1.38n \log_2 n \]

“Gestalt” Analysis of Quicksort

- Look at elements that ended up in positions j < k of the final sorted array
- The expected # of comparisons in Qsort = the expected # of j < k such that the jth and kth elements were compared
- = \[\sum_{j<k} Pr[j\text{th and } k\text{th elts were compared}] \]

Quicksort execution
“Gestalt” Analysis of Quicksort

- Look at elements that end up in positions \(j < k \) of the final sorted array
- What is the chance that they were compared to each other during the course of the algorithm?
 - They started off together in the same sub-problem
 - They ended up in different sub-problems
 - The only time they might have been compared to each is when they were split into separate sub-problems

- The only time they might have been compared to each is when they were split into separate sub-problems
 - The pivot could be \(j^{th} \) or \(k^{th} \)
 - Those are the only cases when they are compared
 - Chances of that happening is 2 out of \((k - j + 1)\) equally likely possibilities

Total cost of Quicksort

- Total expected cost
 \[
 \sum_{k=j}^{2} \frac{2}{k - j + 1}
 \]
 - The contribution for each \(j \) is at most
 \[
 \frac{1}{2}, \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} \leq 2 \log n
 \]
 - Total \(2n \log n \) = 1.38 \(n \log n \)