What to do if the problem you want to solve is NP-hard

- You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special case
 - for example, the Clique problem is easy on "interval graphs"
 - search the literature to see if special cases already solved

What to do if the problem you want to solve is NP-hard

- Try to find an approximation algorithm
 - Recent research has classified problems based on what kinds of approximations are possible if $P \neq NP$
 - Best: $(1+\epsilon)$ factor for any $\epsilon > 0$
 - packing and some scheduling problems, TSP in plane
 - Some fixed constant factor > 1, e.g. 2, 3/2, 100
 - Vertex Cover, TSP in space, other scheduling problems
 - $\Theta(\log n)$ factor
 - Set Cover, Graph Partitioning problems
 - Worst: $\Omega(n^{1-\epsilon})$ factor for any $\epsilon > 0$
 - Clique, Independent-Set, Coloring

What to do if the problem you want to solve is NP-hard

- Try to search the space of possible hints in a more efficient way and hope it is quick enough
 - e.g. back-tracking search
 - For Satisfiability there are 2^n possible truth assignments
 - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid
 - e.g. After setting \(x_1 = 1, x_2 = 0\) we don’t even need to set \(x_3\) or \(x_4\) to know that it won’t satisfy \((\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land (x_3 \lor \neg x_4) \land (\neg x_4 \lor \neg x_1)\)
 - For Satisfiability this seems to run in times like $2^{n/20}$ on typical hard instances.
 - Related technique: branch-and-bound
What to do if the problem you want to solve is NP-hard

- Use heuristic algorithms and hope they give good answers
 - No guarantees of quality
 - Many different types of heuristic algorithms
- Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - We'll mention several on following slides

Heuristic algorithms for NP-hard problems

- local search for optimization problems
 - need a notion of two solutions being neighbors
 - Start at an arbitrary solution \(S \)
 - While there is a neighbor \(T \) of \(S \) that is better than \(S \)
 - \(S \leftarrow T \)
 - Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case

e.g., Neighboring solutions for TSP

![Diagram of two solutions S and T with an edge swap to transform one to the other]

Two solutions are neighbors if there is a pair of edges you can swap to transform one to the other

- randomized local search
 - start local search several times from random starting points and take the best answer found from each point
 - more expensive than plain local search but usually much better answers
- simulated annealing
 - like local search but at each step sometimes move to a worse neighbor with some probability
 - probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
 - helps avoid getting stuck in a local optimum but often slow to converge (much more expensive than randomized local search)
 - analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)

- genetic algorithms
 - view each solution as a string (analogy with DNA)
 - maintain a population of good solutions
 - allow random mutations of single characters of individual solutions
 - combine two solutions by taking part of one and part of another (analogy with crossover in sexual reproduction)
 - get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).
 - little evidence that they work well and they are usually very slow
 - as much religion as science

- artificial neural networks
 - based on very elementary model of human neurons
 - Set up a circuit of artificial neurons
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths
 - Train the circuit
 - Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
 - The network is now ready to use
 - useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems
Other fun directions

DNA computing
- Each possible hint for an NP problem is represented as a string of DNA
- Fill a test tube with all possible hints
- View verification algorithm as a series of tests
 - e.g. checking each clause is satisfied in case of Satisfiability
- For each test in turn
 - Use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
- If any string remains the answer is a YES.
- Relies on fact that Avogadro's number 6×10^{23} is large to get enough strings to fit in a test tube.
- Error-prone & so far only problem sizes less than 15!

Quantum computing
- Use physical processes at the quantum level to implement weird kinds of circuit gates
 - Unitary transformations
- Quantum objects can be in a superposition of many pure states at once
 - Can have n objects together in a superposition of 2^n states
- Each quantum circuit gate operates on the whole superposition of states at once
 - Inherent parallelism
- Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.