CSE 417: Algorithms and Computational Complexity

Complexity:
More NP-completeness

Autumn 2002
Paul Beame

Steps to Proving Problem \(R \) is NP-complete

- Show \(R \) is NP-hard:
 - State: Reduction is from NP-hard Problem \(L \).
 - Show what the map \(T \) is
 - Argue that \(T \) is polynomial time
 - Argue correctness: two directions Yes for \(L \) implies Yes for \(R \) and vice versa.
- Show \(R \) is in NP
 - State what hint is and why it works
 - Argue that it is polynomial-time to check.

Problems we already know are NP-complete

- Satisfiability
- Independent-Set
- Clique
- Vertex-Cover

There are 1000’s of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula \(F \) having precisely 3 variables per clause (i.e., in 3-CNF), is \(F \) satisfiable?

 - Claim: 3-SAT is NP-complete
 - Proof:
 - 3-SAT \(\leq_p \) NP
 - Hint is a satisfying assignment
 - Just like Satisfiability it is polynomial-time to check the hint

Satisfiability \(\leq_p \) 3-SAT

- Reduction:
 - map CNF formula \(F \) to another CNF formula \(G \) that has precisely 3 variables per clause.
 - \(G \) has one or more clauses for each clause of \(F \)
 - \(G \) will have extra variables that don’t appear in \(F \)
 - for each clause \(C \) of \(F \) there will be a different set of variables that are used only in the clauses of \(G \) that correspond to \(C \)

Satisfiability \(\leq_p \) 3-SAT

- Goal:
 - An assignment \(a \) to the original variables makes clause \(C \) true in \(F \) iff
 - there is an assignment to the extra variables that together with the assignment \(a \) will make all new clauses corresponding to \(C \) true.
 - Define the reduction clause-by-clause
 - We’ll use variable names \(z_i \) to denote the extra variables related to a single clause \(C \) to simplify notation
 - in reality, two different original clauses will not share \(z_i \)
Satisfiability \leq^p 3-SAT

- For each clause \(C \) in \(F \):
 - If \(C \) has 3 variables:
 - Put \(C \) in \(G \) as is
 - If \(C \) has 2 variables, e.g. \(C = (x_1 \lor \neg x_3) \)
 - Use a new variable \(z \) and put two clauses in \(G \):
 \[
 (x_1 \lor \neg z_1 \lor \neg z_2) \land (x_1 \lor \neg z_1 \lor z_2)
 \]
 - If original \(C \) is true under assignment \(a \) then both new clauses will be true under \(a \)
 - If new clauses are both true under some assignment \(b \) then the value of \(z \) doesn’t help in one of the two clauses so \(C \) must be true under \(b \)
 - If \(C \) has 1 variable: e.g. \(C = x_1 \)
 - Use two new variables \(z_1, z_2 \) and put 4 new clauses in \(G \):
 \[
 (x_1 \lor \neg z_1 \lor \neg z_2) \land (x_1 \lor \neg z_1 \lor z_2) \land
 (x_1 \lor z_1 \lor \neg z_2) \land (x_1 \lor z_1 \lor z_2)
 \]
 - If original \(C \) is true under assignment \(a \) then all new clauses will be true under \(a \)
 - If new clauses are all true under some assignment \(b \) then the values of \(z_1 \) and \(z_2 \) don’t help in one of the 4 clauses so \(C \) must be true under \(b \)

Graph Colorability

- Defn: Given a graph \(G = (V,E) \), and an integer \(k \), a \(k \)-coloring of \(G \) is
 - an assignment of up to \(k \) different colors to the vertices of \(G \) so that the endpoints of each edge have different colors.

- 3-Color: Given a graph \(G = (V,E) \), does \(G \) have a 3-coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:
 - Hint is an assignment of red, green, blue to the vertices of \(G \)
 - Easy to check that each edge is colored correctly
Variable Part: in 3-coloring, variable colors correspond to some truth assignment (same color as T or F).

Clause Part: Add one 6 vertex gadget per clause connecting its 'outer vertices' to the literals in the clause.

Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph.

Any 3-coloring of the graph colors each gadget triangle using each color.

Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget.

Any 3-coloring of the graph has T at the other end of the blue edge connected to the F.
3-SAT \leq^p 3-Color

Any 3-coloring of the graph yields a satisfying assignment to the formula

Another NP-complete problem

- Knapsack problem
 - Same problem as described on the midterm
 - Given n integers \(a_1, \ldots, a_n \) and integer \(K \)
 - Is there a subset of the n input integers that adds up to exactly \(K \)?
 - \(O(nK) \) solution possible but if \(K \) and each \(a_i \) can be \(n \) bits long then this is exponential time

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there's worse:
 - Some problems provably require exponential time.
 - Ex: Does P halt on \(x \) in \(2^{2^k} \) steps?
 - Some require \(2^*, 2^2, 2^{2^2}, \ldots \) steps

- And of course, some are just plain uncomputable

Summary

- Big-O(n^2) – good
- P – good
- Exp – bad
- Hints help? NP
- NP-hard, NP-complete – bad (I bet)