Minimum Spanning Trees (Forests)

- Given an undirected graph $G=(V,E)$ with each edge e having a weight $w(e)$
- Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are also connected in T
- if G is connected then T is a tree otherwise it is a forest

First Greedy Algorithm

Prim's Algorithm:
- start at a vertex v
- add the cheapest edge adjacent to v
- repeatedly add the cheapest edge that joins the vertices explored so far to the rest of the graph.

Why a greedy algorithm works here

Definition: Given a graph $G=(V,E)$, a cut of G is a partition of V into two non-empty pieces, S and $V-S$

Lemma: For every cut $(S,V-S)$ of G, there is a minimum spanning tree (or forest) containing any cheapest edge crossing the cut, i.e. connecting some node in S with some node in $V-S$.
- call such an edge safe
The greedy algorithm always chooses a safe edge.

- **Prim’s Algorithm**
 - Always chooses cheapest edge from current tree to rest of the graph.
 - This is cheapest edge across a cut which has the vertices of that tree on one side.

Prim's Algorithm

![Graph](image)

Naive Prim’s Algorithm Implementation & Analysis

- Computing the minimum weight edge at each stage.
 - $O(m)$ per step (new vertex)

- n vertices in total

- $O(nm)$ overall

Data Structure Review

- **Priority Queue**: Elements each with an associated key
- Operations
 - **Insert**
 - **Find-min**
 - Return the element with the smallest key
 - **Delete-min**
 - Return the element with the smallest key and delete it from the data structure
 - **Decrease-key**
 - Decrease the key value of some element

- **Implementations**
 - Arrays: $O(n)$ time find/delete-min, $O(1)$ time insert/decrease-key
 - Heaps: $O(\log n)$ time insert/find/delete-min, $O(1)$ time decrease-key

Prim’s Algorithm with Priority Queues

- For each vertex u not in tree maintain current cheapest edge from tree to u
 - Store u in priority queue with key = weight of this edge

- Operations:
 - $n-1$ insertions (each vertex added once)
 - $n-1$ delete-mins (each vertex deleted once)
 - pick the vertex of smallest key, remove it from the priority queue and add its edge to the graph
 - $<m$ decrease-keys (each edge updates one vertex)

Prim’s Algorithm with Priority Queues

- Priority queue implementations
 - **Array**
 - Insert $O(1)$, delete-min $O(n)$, decrease-key $O(1)$
 - Total $O(n^2 + m) = O(n^2)$
 - **Heap**
 - Insert, delete-min, decrease-key all $O(\log n)$
 - Total $O(m \log n)$
 - **d-Heap** ($d = m/n$)
 - Insert, delete-min, decrease-key all $O(\log_{m/n} n)$
 - Total $O(m \log_{m/n} n)$
Single-source shortest paths

- Given an (un)directed graph $G = (V, E)$ with each edge e having a non-negative weight $w(e)$ and a vertex v
- Find length of shortest paths from v to each vertex in G

A greedy algorithm

- Dijkstra’s Algorithm:
 - Maintain a set S of vertices whose shortest paths are known
 - Initially $S = \{v\}$
 - Maintaining current best lengths of paths that only go through S to each of the vertices in G
 - Path-lengths to elements of S will be right, to $V-S$ they might not be right
 - Repeatedly add vertex u to S that has the shortest path-length of any vertex in $V-S$
 - Update path lengths based on new paths through u
Dijkstra's Algorithm

Update distances

Add to S
Dijkstra's Algorithm

Update distances

Dijkstra's Algorithm

Add to S

Dijkstra's Algorithm Correctness

Suppose all distances to vertices in S are correct and u has smallest current value in V-S
\[d(u) \leq d(x) \]
\[x-u \text{ path length } \geq 0 \]
\[\therefore \text{other path is longer} \]

Therefore adding u to S keeps correct distances

Dijkstra's Algorithm

Algorithm also produces a tree of shortest paths to v
- From w follow its ancestors in the tree back to v
- If all you care about is the shortest path from v to w simply stop the algorithm when w is added to S

Implementing Dijkstra's Algorithm

- Need to
 - keep current distance values for nodes in V-S
 - find minimum current distance value
 - reduce distances when vertex moved to S
- Same operations as priority queue version of Prim's Algorithm
 - only difference is rule for updating values
 - node value + edge-weight vs edge-weight alone
 - same run-times as Prim's Algorithm \[O(m \log n) \]