Topological Sort

- Given: a directed acyclic graph (DAG) \(G=(V,E) \)
- Output: numbering of the vertices of \(G \) with distinct numbers from 1 to \(n \) so edges only go from lower number to higher numbered vertices

Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Directed Acyclic Graph

Can do using DFS (see book)

Alternative simpler idea:
- Any vertex of in-degree 0 can be given number 1 to start
- Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.
Implementing Topological Sort

- Go through all edges, computing in-degree for each vertex \(O(m+n)\)
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0
- Total cost \(O(m+n)\)

Matchings and Bipartite Graphs

- Given a graph \(G=(V,E)\)
 - a subset \(M \subseteq E\) of edges is a matching iff no two edges of \(M\) share an endpoint
- Many graphs in practice have two types of nodes and all edges join nodes of different types
 - e.g., each node is either
 - the name \(i\) of an instructor or
 - a course number \(c\)
 - \((i,c)\) is an edge iff instructor \(i\) can teach course \(c\)
- These graphs are called bipartite

The Maximum Matching Problem

- Often would like to find a perfect matching – one with an edge touching every node in the graph
 - In our example, a perfect matching would correspond to an assignment of instructors to courses that would make sure that every course is covered and every instructor is busy teaching
- More generally, the maximum matching problem asks the following
 - Given: a graph \(G=(V,E)\)
 - Find: a matching \(M\) in \(G\) such that contains as many edges as possible

A Greedy Approach

\[M \cap \emptyset \\
\text{while (there is some edge } e \in E \text{ not touching any edge of } M) \text{ do} \\
\text{Add } e \text{ to } M \]

Greed doesn’t always work

Start with a Greedy Matching
Improving a Matching

Replace the red edge with the two blue edges
Based on a path that starts and ends at an unmatched vertex

Alternating Paths

Given a graph G and a matching M in G, an alternating path is a path that
- Starts at an unmatched vertex of G
- Ends at an unmatched vertex of G
- Has edges that alternate between being in M and not being in M
- If there is an alternating path P in graph G with respect to M then we can improve M by "flipping" edges on the path, i.e.
 - Remove all edges of P previously in M
 - Add all edges of P previously not in M

Maximum Bipartite Matching Algorithm:
- $M \leftarrow$ greedy matching
- while (there is an alternating path P with respect to M) do
 - flip the edges along P

Why does it work?
- Need to show that
 - if a larger matching than M exists in G
 then there will be an alternating path in G with respect to M
Alternating paths exist

Lemma: Suppose that M and M' are matchings in graph G and $|M| < |M'|$ then there is an alternating path in G with respect to M

Proof idea:
- Take the graph consisting of the edges of both M and M'
- Every vertex is touched by at most 2 edges
- Graph consists of a collection of paths and cycles

Alternating Paths

- M' has more edges than M does
 - the graph of $M \cup M'$ must have a component with a blue surplus

 Therefore G has an alternating path with respect to M

Our example

- Ignore places where M and M' agree
Finding Alternating Paths

The search was like breadth-first search except that when we hit a matched edge we were forced to follow it. We traversed unmatched edges from top to bottom and matched edges from bottom to top. To enforce this behavior, direct all unmatched edges top to bottom and direct all matched edges bottom to top.

Directing the graph

Now run ordinary breadth-first search from each unmatched node on top until we reach another unmatched node (which will be on the bottom).

Searching from a single unmatched node

In this picture the graph is repeated so it is easier to see the execution. The actual search works on the original graph.
Running time for matching
- Finding the greedy matching is $O(n+m)$ time
- Finding each alternating path is BFS
- $O(n+m)$ time
- Each alternating path increases matching size by 1
 - Total of at most $\frac{n}{2}$ rounds of finding alternating paths
- Total run time $O(nm+n^2)$
- Can do a bit better

Searching from all top unmatched nodes in one round of BFS

Searching from all top unmatched nodes in one round of BFS

BFS from multiple unmatched nodes
- If the algorithm
 - does a single BFS from all unmatched top nodes
 - stops at the level where the first unmatched bottom node is found
 - flips all alternating paths that reach that level
- Then
 - Only $O(\sqrt{n})$ rounds needed (proof is complicated)
 - Total $O(m\sqrt{n} + n^{3/2})$ time needed

Using similar ideas can solve
- Network Flow problem
- How much stuff can flow from s to t?
- Lots of applications

Bipartite matching as a special case of flow