Obvious Algorithm:
- Compute
- Given:
 - Degree $n-1$ polynomials P and Q
 - $P = a_0 + a_1 x + a_2 x^2 + ... + a_{n-2} x^{n-2} + a_{n-1} x^{n-1}$
 - $Q = b_0 + b_1 x + b_2 x^2 + ... + b_{n-2} x^{n-2} + b_{n-1} x^{n-1}$
- Compute:
 - Degree $2n/2$ Polynomial PQ
 - $PQ = (a_{n-2} b_{n-2} + (a_{n-1} b_0) x + (a_{n-1} b_1 + a_{n-2} b_1) x^2$ $+ ... + (a_0 b_{n-2} + a_{n-1} b_{n-1}) x^{2n/2}$ $+ a_{n-2} b_{n-1} x^{2n-2}$
- Obvious Algorithm:
 - Compute all $a_i b_j$ and collect terms
 - $\Theta(n^2)$ time

Another Divide & Conquer Example: Multiplying Faster
- On the first HW you analyzed our usual algorithm for multiplying numbers
 - $\Theta(n^2)$ time
- On real machines each “digit” is, e.g., 32 bits long but still get $\Theta(n^2)$ running time with this algorithm when run on n-bit multiplication
- We can do better!
 - We’ll describe the basic ideas by multiplying polynomials rather than integers
 - Advantage is we don’t get confused by worrying about carries at first

Polynomial Multiplication
- Given:
 - Degree $n-1$ polynomials P and Q
- Compute:
 - Degree $2n/2$ Polynomial PQ
- Obvious Algorithm:
 - Compute all $a_i b_j$ and collect terms
 - $\Theta(n^2)$ time

Naive Divide and Conquer
- Assume $n=2k$
 - $P = (a_0 + a_1 x + a_2 x^2 + ... + a_{k-2} x^{k-2} + a_{k-1} x^{k-1}) +$ $(a_0 + a_1 x + ... + a_{k-2} x^{k-2} + a_{k-1} x^{k-1}) x^k$ $= P_0 + P_1 x^k$ where P_0 and P_1 are degree $k-1$ polynomials
 - Similarly $Q = Q_0 + Q_1 x^k$
 - $PQ = (P_0 + P_1 x^k)(Q_0 + Q_1 x^k)$
 - $= P_0 Q_0 + (P_0 Q_1 + P_1 Q_0) x^k + P_1 Q_1 x^{2k}$
 - 4 sub-problems of size $k=n/2$ plus linear combining
- $T(n)$=4 $T(n/2)$+cn \quad Solution $T(n) = \Theta(n^2)$

Master Divide and Conquer Recurrence
- If $T(n) = a T(n/b) + cn^k$ for $n>b$ then
 - if $a>b^k$ then $T(n) = \Theta(n^k)$
 - if $a=b^k$ then $T(n) = \Theta(n^k \log n)$
 - Works even if it is $[n/b]$ instead of n/b.

Notes on Polynomials
- These are just formal sequences of coefficients
- when we show something multiplied by x^k it just means shifted k places to the left – basically no work

Usual polynomial multiplication

<table>
<thead>
<tr>
<th>4x^2 + 2x + 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2 - 3x + 1</td>
</tr>
<tr>
<td>4x^2 + 2x + 2</td>
</tr>
<tr>
<td>-12x^2 - 6x</td>
</tr>
<tr>
<td>4x^2 - 10x + 2</td>
</tr>
</tbody>
</table>
Karatsuba’s Algorithm

A better way to compute the terms

Compute

\[A \leftarrow P_0 Q_0 \]
\[B \leftarrow P_1 Q_1 \]
\[C \leftarrow (P_0 + P_1)(Q_0 + Q_1) = P_0 Q_0 + P_0 Q_1 + P_1 Q_0 + P_1 Q_1 \]

Then

\[P_0 Q_1 + P_1 Q_0 = C - A - B \]

So

\[P_0 Q_1 = \frac{C - A - B}{2} \cdot \text{shift}(n, 1) \]

3 sub-problems of size \(n/2 \) plus \(O(n) \) work

\[T(n) = 3 T(n/2) + O(n) \] where \(a = \log_2 3 \approx 1.59... \)

Karatsuba: Details

PolyMul(P, Q):

// P, Q are length \(n \rightarrow 2k \) vectors, \(\|P[k], Q[k]\| \) being
// the coefficient of \(x^k \) in polynomials P, Q respectively.
// Let Pzero be elements \(0..k-1 \) of P, Pone be elements \(k..n-1 \)
// Qzero, Qone: similar
A ← PolyMul(Pzero, Qzero); // result is a \((2k-1) \)-vector
B ← PolyMul(Pone, Qone); // ditto
Psum ← Pzero + Pone; // add corresponding elements
Qsum ← Qzero + Qone; // ditto
C ← polyMul(Psum, Qsum); // another \((2k-1) \)-vector
Mid ← C – A – B; // subtract corresponding elements
R ← A + \text{shift}(n/2) + \text{shift}(B, n) // a \((2n-1) \)-vector
Return(R);

Multiplication

Polynomials

- Naive: \(\Theta(n^2) \)
- Karatsuba: \(\Theta(n^{1.58}) \)
- Best known: \(\Theta(n \log n) \) \(\approx \) "Fast Fourier Transform"
- FFT widely used for signal processing

Integers

- Similar, but some ugly details re: carries, etc. gives \(\Theta(n \log n \log \log n) \), mostly unused in practice except for symbolic manipulation systems like Maple

Hints towards FFT: Interpolation

Given set of values at 5 points Can find unique degree 4 polynomial going through these points
Karatsuba’s algorithm and evaluation and interpolation

- Strassen gave a way of doing 2x2 matrix multiplies with fewer multiplications.
- Karatsuba’s algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications.
 - \(P_0 = (P_0^2) + (P_0 Q_0) \)
 - \(P_1 = (P_1 Q_0) + (P_0 Q_1) \)
 - Evaluate at 0,1,-1 (Could also use other points)
 - \(A = P(0) Q(0) = P_0 \)
 - \(C = P(1) Q(1) = (P_0 P_1)(Q_0 + Q_1) \)
 - \(D = P(-1) Q(1) = (P_1 P_0)(Q_0 - Q_1) \)
 - Interpolating, Karatsuba’s Mid=(C-D)/2 and \(B = (C+D)/2 - A \)

Fun facts about \(\omega = e^{2\pi i/n} \) for even \(n \)

- \(\omega^n = 1 \)
- \(\omega^{n/2} = -1 \)
- \(\omega^{kn/2} = \omega^k \) for all values of \(k \)
- \(\omega^2 = e^{\pi i m/n} \) where \(m \equiv n/2 \)
- \(\omega^k = \cos(2k\pi/n) + i\sin(2k\pi/n) \) so can compute with powers of \(\omega \)

The recursive idea for \(n \) a power of 2

Also
 - \(P_{even} \) and \(P_{odd} \) have degree \(n/2 \) where
 - \(P(\omega^k) = P_{even}(\omega^{2k}) + \omega^k P_{odd}(\omega^{2k}) \)
 - \(P(-\omega^k) = P_{even}(\omega^{2k}) - \omega^k P_{odd}(\omega^{2k}) \)

Recursive Algorithm
 - Evaluate \(P_{even} \) at \(1, \omega^n, \omega^{2n}, \ldots, \omega^{(n/2-1)n} \)
 - Evaluate \(P_{odd} \) at \(1, \omega^n, \omega^{2n}, \ldots, \omega^{(n/2-1)n} \)
 - Combine to compute \(P \) at \(1, \omega^n, \omega^{2n}, \ldots, \omega^{(n/2-1)n} \)
 - Combine to compute \(P \) at \(-1, \omega^n, \omega^{2n}, \ldots, \omega^{(n/2-1)n} \)

Hints towards FFT: Evaluation at Special Points

- Evaluation of polynomial at 1 point takes \(O(n) \)
 - So 2n points (naively) takes \(O(n^2) \)—no savings
- Key trick:
 - use carefully chosen points where there’s some sharing of work for several points, namely various powers of \(\omega = e^{2\pi i/n} \), \(i = \sqrt{-1} \)
 - Plus more Divide & Conquer.
- Result:
 - both evaluation and interpolation in \(O(n \log n) \) time

The key idea for \(n \) even

- \(P(\omega) = a_0 + a_1 \omega + a_2 \omega^2 + \cdots + a_{n-1} \omega^{n-1} \)
 - \(= a_0 + a_2 \omega^2 + a_4 \omega^4 + \cdots + a_{n-2} \omega^{n-2} \)
 - \(= P_{even}(\omega^2) + \omega P_{odd}(\omega^2) \)
 - \(P(\omega^2) = a_0 + a_1 \omega^2 + a_2 \omega^4 + \cdots + a_{n-1} \omega^{n-2} \)
 - \(= a_0 + a_2 \omega^2 + a_4 \omega^4 + \cdots + a_{n-2} \omega^{n-4} \)
 - \(= P_{even}(\omega^4) + \omega^2 P_{odd}(\omega^4) \)

where \(P_{even}(x) = a_0 + a_2 x + a_4 x^2 + \cdots + a_{n-2} x^{n-2} \)
and \(P_{odd}(x) = a_1 + a_3 x + a_5 x^2 + \cdots + a_{n-1} x^{n-2} \)

Analysis and more

- Run-time
 - \(T(n) = 2 T(n/2) + cn \) so \(T(n) = O(n \log n) \)
- So much for evaluation ... what about interpolation?
 - Given
 - \(r_0, R(1), r_1 R(\omega), r_2 R(\omega^2), \ldots, r_{n-1} R(\omega^{n-1}) \)
 - Compute
 - \(c_0, c_1, \ldots, c_{n-1}, \) s.t. \(R(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \)
Interpolation = Evaluation: strange but true

- Weird fact:
 - If we define a new polynomial \(S(x) = r_0 + r_1x + r_2x^2 + \ldots + r_nx^n \) where \(r_0, r_1, \ldots, r_n \) are the evaluations of \(R \) at \(1, \omega, \ldots, \omega^{n-1} \)
 - Then \(c_k = S(\omega^k)/n \) for \(k=0,\ldots,n-1 \)

- So...
 - evaluate \(S \) at \(1, \omega, \ldots, \omega^{n-1} \) then divide each answer by \(n \) to get \(c_0, \ldots, c_{n-1} \)
 - \(\omega^k \) behaves just like \(\omega \) did so the same \(O(n \log n) \) evaluation algorithm applies!

Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing sub-problems of roughly equal size is usually critical
- Examples:
 - Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, …

Why this is called the discrete Fourier transform

- Real Fourier series
 - Given a real valued function \(f \) defined on \([0, 2\pi]\)
 - the Fourier series for \(f \) is given by
 \[
 f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos(mx) \, dx
 \]
 - is the component of \(f \) of frequency \(m \)
 - In signal processing and data compression one ignores all but the components with large \(a_m \) and there aren’t many since

- Complex Fourier series
 - Given a function \(f \) defined on \([0, 2\pi]\)
 - the complex Fourier series for \(f \) is given by
 \[
 f(z) = b_0 + b_1 e^{iz} + b_2 e^{2iz} + \ldots
 \]
 - is the component of \(f \) of frequency \(m \)
 - If we discretize this integral using values at \(2\pi/n \) equally spaced points between \(0 \) and \(2\pi \), we get
 \[
 b_m = \frac{1}{2\pi} \int_{0}^{2\pi} f(z) e^{-imz} \, dz
 \]
 - where \(f_k = f(2k\pi/n) \) just like interpolation!