Algorithm Design Techniques

- Dynamic Programming
 - Given a solution of a problem using smaller sub-problems, e.g., a recursive solution
 - Useful when the same sub-problems show up again and again in the solution

A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$
- Recursive algorithm:
 - `Fibo(n)`
 - if $n = 0$ then return(0)
 - else if $n = 1$ then return(1)
 - else return(Fibo(n-1)+Fibo(n-2))

Call tree - start

Memo-ization

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed
- Dynamic Programming
 - Convert memo-ized algorithm from a recursive one to an iterative one
Fibonacci - Dynamic Programming Version

- FiboDP(n):
 - F[0] ← 0
 - F[1] ← 1
 - for i=2 to n do
 - F[i] = F[i-1] + F[i-1]
 - endfor
 - return(F[n])

Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
 - principle of optimality

List partition problem

- Given: a sequence of n positive integers s₁,...,sₙ and a positive integer k
- Find: a partition of the list into up to k blocks:
 - s₁,...,sᵢ₁ | sᵢ₁+1,...,sᵢ₂ | sᵢ₂+1,...,sᵢⱼ-1 | sᵢⱼ-1+1,...,sₙ
 - so that the sum of the numbers in the largest block is as small as possible.
 - i.e. find spots for up to k-1 dividers

Greedy approach

- Ideal size would be P = \(\sum_{i=1}^{n} \frac{s_i}{k} \)
- Greedy: walk along until what you have so far adds up to P then insert a divider
- Problem: it may not exact (or correct)
 - 100 200 400 500 900 | 700 600 | 700 600
 - sum is 4800 so size must be at least 1600.

Recursive solution

- Try all possible values for the position of the last divider
- For each position of this last divider
 - there are k-2 other dividers that must divide the list of numbers prior to the last divider as evenly as possible
 - s₁,...,sᵢ₁ | sᵢ₁+1,...,sᵢ₂ | sᵢ₂+1,...,sᵢⱼ-1 | sᵢⱼ-1+1,...,sₙ
 - recursive sub-problem of the same type

Recursive idea

- Let M[n,k] the smallest cost (size of largest block) of any partition of the n into k pieces.
- If between the jth and i+1st is the best position for the last divider then
 - M[n,k] = max (M[i,k-1] , \(\sum_{j=i+1}^{n} s_j \))
- In general
 - M[n,k] = minᵢ max (M[i,k-1] , \(\sum_{j=i+1}^{n} s_j \))
Time-saving - prefix sums

- Computing the costs of the blocks may be expensive and involved repeated work

- Idea: Pre-compute prefix sums
 - \(p[1] = s_1 \)
 - \(p[2] = s_1 + s_2 \)
 - \(p[3] = s_1 + s_2 + s_3 \)
 - \(\ldots \)
 - \(p[n] = s_1 + s_2 + \ldots + s_n \)

 - cost: \(n \) additions, space \(n \)
 - Length of block \(s_{i+1} + \ldots + s_j \) is just \(p[j] - p[i] \)

Linear Partition Algorithm

Partition \(\text{Partition}(S, k) \):

- \(p[0] \leftarrow 0; \) for \(i = 1 \) to \(n \) do \(p[i] \leftarrow p[i-1] + s_i \)
- for \(i = 1 \) to \(n \) do \(M[i, 1] \leftarrow p[i] \)
- for \(j = 1 \) to \(k \) do \(M[1, j] \leftarrow s_1 \)
- for \(i = 2 \) to \(n \) do
 - for \(j = 2 \) to \(k \) do
 - \(M[i, j] \leftarrow \infty \)
 - for \(pos = 1 \) to \(i-1 \) do
 - \(s \leftarrow \max(M[pos, j-1], p[i] - p[pos]) \)
 - if \(M[i, j] > s \) then
 - \(M[i, j] \leftarrow s; D[i, j] \leftarrow pos \)

\(\text{D}[i, j] \leftarrow \text{value of pos where min is achieved} \)