Steps to Proving Problem R is NP-complete

- **Show R is NP-hard:**
 - State: Reduction is from NP-hard Problem L.
 - Show what the map is.
 - Argue that the map is polynomial time.
 - Argue correctness: two directions Yes for L implies Yes for R and vice versa.

- **Show R is in NP**
 - State what hint is and why it works.
 - Argue that it is polynomial-time to check.

Problems we already know are NP-complete

- Satisfiability
- Independent-Set
- Clique
- Vertex Cover

There are 1000’s of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

A particularly useful problem for proving NP-completeness

- 3-SAT: Given a CNF formula F having precisely 3 variables per clause (i.e., in 3-CNF), is F satisfiable?

- **Claim:** 3-SAT is NP-complete

- **Proof:**
 - 3-SAT \in NP
 - Hint is a satisfying assignment
 - Just like Satisfiability it is polynomial-time to check the hint

Satisfiability \leq^P 3-SAT

- **Reduction:**
 - mapping CNF formula F to another CNF formula G that has precisely 3 variables per clause.
 - G has one or more clauses for each clause of F.
 - G will have extra variables that don’t appear in F.
 - For each clause C of F there will be a different set of variables that are used only in the clauses of G that correspond to C.

Satisfiability \leq^P 3-SAT

- **Goal:**
 - An assignment A to the original variables makes clause C true in F if
 - there is an assignment to the extra variables that together with the assignment A will make all new clauses corresponding to C true.

 Define the reduction clause-by-clause

 - We’ll use variable names z_i to denote the extra variables related to a single clause C to simplify notation.
 - In reality, two different original clauses will not share z_i.
Satisfiability \(\leq_p \text{3-SAT}

For each clause \(C\) in \(F\):

- If \(C\) has 3 variables:
 - Put \(C\) in \(G\) as is

- If \(C\) has 2 variables, e.g. \(C = (x_1 \vee \neg x_2)\)
 - Use a new variable \(z\) and put two clauses in \(G\):

 \[
 (x_1 \vee \neg x_2 \vee z) \land (x_1 \vee \neg x_2 \vee \neg z)
 \]
 - If original \(C\) is true under assignment \(A\) then both new clauses will be true under \(A\)
 - If new clauses are both true under some assignment \(B\) then the value of \(z\) doesn't help in one of the two clauses so \(C\) must be true under \(B\)

- If \(C\) has 1 variable: e.g. \(C = x_1\)
 - Use two new variables \(z_1, z_2\) and put 4 new clauses in \(G\):

 \[
 (x_1 \vee \neg z_1 \vee \neg z_2) \land (x_1 \vee z_1 \vee \neg z_2) \land (x_1 \vee \neg z_1 \vee z_2) \land (x_1 \vee z_1 \vee z_2)
 \]
 - If original \(C\) is true under assignment \(A\) then all new clauses will be true under \(A\)
 - If new clauses are all true under some assignment \(B\) then the values of \(z_1\) and \(z_2\) doesn't help in one of the 4 clauses so \(C\) must be true under \(B\)

- If \(C\) has \(k \geq 4\) variables: e.g. \(C = (x_1 \vee ... \vee x_k)\)
 - Use \(k-3\) new variables \(z_2, z_3, ..., z_{k-2}\) and put \(k-2\) new clauses in \(G\):

 \[
 (x_1 \vee x_2 \vee z_2) \land (\neg z_2 \vee x_3 \vee z_3) \land (\neg z_3 \vee x_4 \vee z_4) \land ...
 \]

 \[
 \land (\neg z_{k-3} \vee x_{k-2} \vee z_{k-2}) \land (\neg z_{k-2} \vee x_{k-1} \vee x_k)
 \]
 - If original \(C\) is true under assignment \(A\) then some \(x_i\) is true for \(i \leq k\). By setting \(z_j\) true for all \(j < i\) and false for all \(j \geq i\), we can extend \(A\) to make all new clauses true.
 - If new clauses are all true under some assignment \(B\) then some \(x_i\) must be true for \(i \leq k\) because \(z_2 \land (\neg z_2 \vee z_3) \land ... \land (\neg z_{k-3} \vee z_{k-2}) \land \neg z_{k-2}\) is not satisfiable

Graph Colorability

- Defn: Given a graph \(G = (V,E)\), and an integer \(k\), a \(k\)-coloring of \(G\) is:
 - an assignment of up to \(k\) different colors to the vertices of \(G\) so that the endpoints of each edge have different colors.

- **3-Color**: Given a graph \(G = (V,E)\), does \(G\) have a 3-coloring?

- **Claim**: 3-Color is NP-complete

- **Proof**
 - Hint is an assignment of red,green,blue to the vertices of \(G\)
 - Easy to check that each edge is colored correctly

3-SAT \(\leq_p \text{3-Color}

Reduction:

We want to map a 3-CNF formula \(F\) to a graph \(G\) so that:

- \(G\) is 3-colorable iff \(F\) is satisfiable
Variable Part:
in 3-coloring, variable colors correspond to some truth assignment (same color as T or F).

Clause Part:
Add one 6 vertex gadget per clause connecting its ‘outer vertices’ to the literals in the clause.

Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph.

Any 3-coloring of the graph colors each gadget triangle using each color.

Any 3-coloring of the graph has F opposite the O color in the triangle of each gadget.

Any 3-coloring of the graph has T at the other end of the blue edge connected to the F.
3-SAT $\leq^p 3$-Color

Any 3-coloring of the graph yields a satisfying assignment to the formula.