
CSE 415 Spring 2021 Assignment 4

Last name: First name:

Due Wednesday night May 5 via Gradescope at 11:59 PM. You may turn in either of the
following types of PDFs: (1) Scans of these pages that include your answers (handwriting is
OK, if it’s clear), or (2) Documents you create with the answers, saved as PDFs. When you
upload to GradeScope, you’ll be prompted to identify where in your document your answer
to each question lies.

Do the following five exercises. These are intended to take 20-25 minutes each if you know
how to do them. Each is worth 20 points. If any corrections have to be made to this
assignment, these will be posted in ED.

This is an individual-work assignment. Do not collaborate on this assignment.

Prepare your answers in a neat, easy-to-read PDF. Our grading rubric will be set up such
that when a question is not easily readable or not correctly tagged or with pages repeated or
out of order, then points will be be deducted. However, if all answers are clearly presented,
in proper order, and tagged correctly when submitted to Gradescope, we will award a 5-point
bonus.

If you choose to choose to typeset your answers in Latex using the template file for this
document, please put your answers in blue while leaving the original text black.

1



1 Blind Search with the Towers of Hanoi

The 2-disk version of the Towers of Hanoi is a trivial puzzle for humans and machines alike.
However, it’s nice and simple context for comparing different algorithms.

Several aspects of this problem will come up again in Assignment 5, and so this problem will
not only help you get more familiar with certain details of the search algorithms, but it will
provide some insight into the the Towers of Hanoi problem space.

Let us assume that the problem is formulated with the following state representation and
operators.

Initial state:

Left: 1,2

Middle:

Right:

Goal state:

Left:

Middle:

Right: 1,2

Operator φ0: ”Move a disk from Left to Middle.”

Operator φ1: ”Move a disk from Left to Right.”

Operator φ2: ”Move a disk from Middle to Left.”

Operator φ3: ”Move a disk from Middle to Right.”

Operator φ4: ”Move a disk from Right to Left.”

Operator φ5: ”Move a disk from Right to Middle.”

Hand simulate DFS (Depth-First Search, BFS (Breadth-First Search) and IDDFS (Iterative-
Deepening Depth-First Search) on this problem, in order to determine the state visitation
orderings and compare them.

The problem-space graph for this formulation can be laid out as in the diagrams for sub-
questions a-c below. Note that the operators always take a specific direction, as shown in
this diagram:

2



Use the copies of the problem space graph below to show the progress of each search algo-
rithm. When doing IDDFS, you’ll use a separate copy of the graph for each outer iteration.

For each algorithm stop when the goal node (g) is selected as the current state.

Number the nodes as they are visited (i.e., as they become the current state). The initial
state should get numbered 1 when each algorithm starts. However, during IDDFS, it should
get multiple numbers since it will be visited multiple times.

In order to get the correct numberings, it is very important to follow the pseudocode in the
DFS, and BFS algorithms, and to generate the successors by using the operators in their
given order: phi 0, phi 1, phi 2, phi 3, phi 4, phi 5.

(a) (0 points) Hand-simulate DFS and put the node visitation order on the graph. Note
that the answers to this part are done for you as an example.

3



(b) (8 points) Hand-simulate BFS and put the node visitation order on the graph. As in
the given example, also show the moves using arrows and operator identifiers (φ0, etc.).

4



(c) (12 points) Hand-simulate IDDFS and put the node visitation order onto the four graphs
below. Use one graph copy for each iteration of IDDFS. The first graph should have only
one node (for the initial state) visited. on the graph. The second graph’s initial state
should have visitation number 2 (since this state is visited again). Note that within one
iteration of IDDFS, some node(s) may be reached multiple times along different paths
from the initial state. This is OK, and each such repeat visit should be counted as a
node visitation and shown in your results. However, there should be no more than one
visitation of any given node along the current path between the initial state and current
state. That is, the search path must never be allowed to loop back on itself.

First and second iterations:

Third and fourth iterations:

5



2 Heuristic Search

(a) (5 points) Consider the following statement: The best heuristic is always the one that
gives you the estimate closest to the true cost. Is this always true? Explain why you
agree or disagree with the statement.

state (s) s0 A B C D E F G H γ

heuristic h1(s) 14 16 10 10 7 2 20 10 5 0
heuristic h2(s) 9 16 7 9 5 2 20 7 4 0
heuristic h3(s) 10 16 8 10 6 2 20 8 4 0

(b) (5 points) Which heuristics (h1, h2, h3) shown above are admissible?

(c) (5 points) Which heuristics (h1, h2, h3) shown above are consistent?

(d) (5 points) Which of the 3 heuristics above would you select as the best one to use with
A* search? Why? Refer to both consistency and admissibility in your justification.

6



state (s) s0 A B C D E F G H γ

heuristic h4(s) 7 28 5 5 4 1 24 5 3 0

(e) (5 points) Referring back to the graph again, trace out the path that would be followed
in an A* search, given the heuristics provided above. As you trace the path, complete
the table below, indicating which nodes are on the open and closed lists, along with their
’f’ values:

Open Closed

Starting A∗ search [s0, 7] empty
s0

7



3 Adversarial Search

Minimax game-tree search finds a best move under the assumption that both players play
rationally, to either maximize or minimize the value of the same static-evaluation function to
a certain ply limit. (It can also do well even when those assumptions are relaxed somewhat.)
However, the quality of a move usually improves as the maximum ply is increased. That
usually makes minimax take a lot longer. Alpha-beta pruning is a method for speeding up
minimax by eliminating any subtrees from the search that can be identified as not able to
contribute to the outcome. However, alpha-beta pruning’s success is dependent upon the
order in which the successors of a state are analyzed.

For each of the four following methods, determine the number of cutoffs, the number of leaf
nodes statically evaluated and the total number of states that would have to be generated.
Note that this example has a maximizing node at the root; that means we are computing
the value of the best move for the maximizing player and computing the maximizing player’s
best move, as the overall objective in this problem.

For parts (c) and (d) there are blank tree diagrams you should complete to show the new
order in which the space is searched.

(a) (7 points) Straight minimax search, depth-first, left-to-right. Show the backed-up values

8



at each internal node. Then fill in the table. Total number of states generated should
include the root, and should include those leaf nodes that had to be statically evaluated.

Number of leaf nodes cutoff: 0
Number of leaf nodes processed:
Total number of states generated:

(b) (3 points) Alpha-beta pruning, left-to-right, on the given tree. Mark where cutoffs occur
on the tree, and fill out the table:

Number of leaf nodes cutoff:
Number of leaf nodes processed:
Total number of states generated:

(c) (10 points) Alpha-beta pruning, using a secondary evaluation function f2(s). Rather
than going depth-first, use the following method. Start at the root, A; call this Sc for
current state. To process Sc, check whether it is a leaf node (i.e., at the maximum
ply). If so, return its static value (the normal static evaluation, the values are given
in the rectangles in the diagram); otherwise, Sc is an internal node, so generate all its
successors (its immediate children, but not their children, etc.). Apply f2 to each of the
children, and sort them into best-first order. (If Sc is a maximizing node, then highest
is best. Else lowest is best.) Process these children in this best-first order, using the
regular alpha-beta method, by first calling recursively on the best child, then the next
best child (unless a cutoff happens and the rest of the children of Sc can be ignored).
Return the best value found among those children not cut off.

For this part, use f2 as given in this table. Leave nodes K through T in the same relative
order as in the original diagram. (In practice, an agent designer might use a single static
evaluation function to serve both the usual purpose of evaluating leaf nodes and the new
purpose of pre-evaluating internal nodes, but one point of this exercise is to show that
they can be different functions, possibly investing more or fewer computational resources
into finding a best ordering for the successors of a state prior to alpha-beta pruning.)

Node s: A B C D E F G H I J
f2(s): 7 6 3 2 4 5 4 1 2

Complete the diagram of the re-ordered tree, labeling each internal node with the letter
for the appropriate state in the original diagram. Draw in the missing edges, since the
tree’s shape may now be a little different. Mark where cutoffs occur on the tree, and fill
out the table:

9



Number of leaf nodes cutoff:
Number of leaf nodes processed:
Total number of states generated:

Note that the total number of states generated must be sure to include all the children
of any internal node that did not get cut off, since we assume that f2 cannot be applied
to them unless they are created.

10



4 Markov Decision Processes

Consider the following game. You have two coins - one gold and one silver, that are tossed
independently of one another. The gold coin has higher value - if you get heads on the gold
coin, you obtain a score of 2, and 0 otherwise. Getting heads on the silver coin gives a score
of 1 or 0 for heads or tails respectively. However, the gold coin is biased - there is only 1/3
probability of getting heads, while the silver coin is unbiased.

On every turn, you set in motion a series of coin flips. At the beginning of each turn, you
flip both coins once. The gold coin is the driver; if it gives tails, your turn ends. However,
if you get heads, then you flip the 2 coins again. You keep repeating the coin flips till either
the gold coin gives tails, or you go bust (see description below). You record a turn score,
which is the sum of scores of both coins across all the coin flips in that turn. Once the turn
ends, you may start off a new turn.

You also keep a running score that accumulates the turn scores obtained across all the
turns so far.

Just before any turn starts, you can either choose to toss the coins or stop if the running
score is less than 6. In the middle of a turn, if the sum of your running score and turn score
accrued so far in the turn reaches or exceeds 6, you “go bust” and go to the final state,
accruing zero reward.

When in any state other than the final state, you are allowed to stop. When you stop, you
reach the final state and your reward is the running score (which is less than 6).

Note: there is no direct reward from tossing the coins (or we could say that there is a reward
but it’s always 0). The only non-zero reward comes from explicitly taking the stop action.
Discounting or not should not matter in the MDP for this game, but for the record, we
assume no discounting (i.e., γ = 1).

This game can be formulated in the form of an MDP. Let the MDP be (S,A, T,R) where:
S = {s0, s1, · · ·},
A = {a0, a1, · · ·},
T : S × A× S → [0, 1] and
R : S × A× S → R.

11



(a) (4 points) Write down the states si ∈ S and actions aj ∈ A for this MDP. (Hint: there
are 7 states in total and each should correspond to a numeric value except the final state)

(b) (10 points) Give the full transition function T (s, a, s′) where s is a current state, a is an
action, and s′ is a possible next state when action a is taken in s. In other words, for
any triple (s, a, s′) ∈ S×A×S, you need to provide the value of the transition function.
For convenience, you may give the values in the form of a table (corresponding to each
action), where the s states are the rows, and s′ states are the columns.

12



(c) (2 points) Give the full reward function R(s, a, s′) i.e., for any triple (s, a, s′), you need
to give the value of the reward function. Note: You don’t need to tabulate these values,
one way you can write them is the following:
R(s0, a0, s0) = 〈value1〉
R(s0, a0, s1) = 〈value2〉
...
R(s, a, s′) = 0, otherwise

(d) (4 points) What is the optimal policy? You may describe it in words. Give a brief
explanation as to how you chose that policy.

13



5 Computing MDP State Values and Q-Values

Recently, Jim has been working on building an intelligent agent to help a friend solve a
problem that can be modeled using an MDP. In this environment, there are 3 possible states
S = {s1, s2, s3} and at each state the agent always has 2 available actions A = {f, g}.
Applying any action a from any state s has a probability T (s, a, s′) of moving the agent to
one of the other two states but will never result in the agent staying at the original state.
The rewards for this environment represent the cost/reward of an action, and thus are only
dependent on the original state and action taken (∀s′ ∈ S,R(s, a, s′) = R(s, a)), not where
the agent ended up.

(a) (2 points) Write down the problem-specific Bellman update equations for each of the
3 states (V (s) =?) in this particular MDP. (Use the names of the specific states and
actions.)

(b) (18 points) One fateful day, while Jim was running a VI-based MDP solver on this
problem, a mistake in specifying arguments caused the file that recorded the transition
probability table T (s, a, s′) to be overwritten with the output solution. Now, Jim has
the solution V ∗(s) and optimal policy π∗(s) but has lost the transition probabilities for
the problem.

s a R(s, a) V ∗(s) π∗(s)

s1 f −3 −1.4 g
s1 g −4 −1.4 g
s2 f 3 3 f
s2 g 3 3 f
s3 f 1.92 1.4 f
s3 g 1.7 1.4 f

After looking at the command line history and noting that a discount of γ = 1 was speci-
fied, Jim muses that it may be possible to recover some parts of the transition probability
table T (s, a, s′). Using the information above, fill in the values in table below that you

14



can recover. For the entries where it is impossible to determine the value, figure out the
upper bound and the lower bound for this entry and write down the range of values.

s a T (s, a, s1) T (s, a, s2) T (s, a, s3)

s1 f 0
s1 g 0
s2 f 0
s2 g 0
s3 f 0
s3 g 0

15


