

e ^{ns}	xample T	raining	Data
Long	Yellow	class	count
No	No	Lemon	2
No	No	Banana	0
No	No	Other	3
No	Yes	Lemon	5
No	Yes	Banana	0
No	Yes	Other	1
Yes	No	Lemon	0
Yes	No	Banana	3
Yes	No	Other	2
Yes	Yes	Lemon	0
Yes	Yes	Banana	9
Yes	Yes	Other	0
Vash.	Learning: Naïve Bayes Classi	fiers	

To Classify An Instance

$\langle \langle not \, long, \, yellow \rangle, ? \rangle$

Let's call the vector (not long, yellow) the *evidence* E. Ideally, we would get the *a posteriori* probability of each class and choose the class with the highest: P(lemon | E), P(banana | E), P(other | E). This would require applying Bayes' rule as follows, e.g., for lemon:

P(lemon | E) = P(E | lemon) P(lemon) / P(E) However, we don't have P(E | lemon) in the given feature likelihoods we calculated.

Univ. of Wash. Learning: Naïve Bayes Classifiers

Likelihood Computation
We could, in principle, compute P(E | lemon) using this:
P(not long, yellow | lemon) =
P(not long | lemon and yellow) P(yellow | lemon).
But we don't have the first of these readily available, either.
It's a lot easier if we assume that P(long | lemon) and P(yellow | lemon) are independent.
Then we can approximate P(E | lemon) as
P(not long and yellow | lemon) =
(1-P(long | lemon)) P(yellow | lemon)

Let X = $\langle x_0, x_1, ..., x_{n-1} \rangle$ be a vector in Rⁿ.

We can still use Bayes' rule to compute posterior values useful for classification.

However, the values will be probability density values rather than probabilities. P(y | X) = P(X | y)P(y) / P(X)

The Naïve Bayes assumption of conditional independence is P(X | y) = P(x_0 | y) P(x_1 | y) ... P(x_{n-1} | y)

Univ. of Wash. Learning: Naïve Bayes Classifiers

Univ. of Wash. Learning: Naïve Bayes Classifiers

18