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Outline

• Motivation
• A discrete example: Classifying fruits
• The Naïve Bayes assumption
• Maximum likelihood estimation of 

probabilities from samples
• A continuous example using a Gaussian 

model: Classifying online shoppers.
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Motivation

• Bayes' rule is a general technique in 
classification, but costly in terms of requiring large 
training sets.
• By making independence assumptions, much 
less training data is required.
• Often the results are very good.
• Naïve Bayes classifiers are based on the 
assumption that likelihoods of each feature are 
independent of those of other features. 
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A Discrete Example

A training example consists of a vector of attribute values 
with a category indicator.

  long, yellow , banana 
  not long, yellow, lemon 
  long, not yellow, other
 shape, color, 

Category 
indicators

Attribute 
values

Attribute 
names
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Example Training Data Stats
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Long Yellow class count

No No Lemon 2

No No Banana 0

No No Other 3

No Yes Lemon 5

No Yes Banana 0

No Yes Other 1

Yes No Lemon 0

Yes No Banana 3

Yes No Other 2

Yes Yes Lemon 0

Yes Yes Banana 9

Yes Yes Other 0
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The Training Data Stats (cont.)
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Long Yellow class count

No No Lemon 2

No No Banana 0

No No Other 3

No Yes Lemon 5

No Yes Banana 0

No Yes Other 1

Yes No Lemon 0

Yes No Banana 3

Yes No Other 2

Yes Yes Lemon 0

Yes Yes Banana 9

Yes Yes Other 0

Compute the priors:
P(lemon) =  7 / 25
P(banana) = 12 / 25
P(other) =  6 / 25

P(long) = 14 / 25
P(yellow) = 15 / 25

Compute the likelihoods of individual features:
P(long | lemon)   = 0
P(long | banana) = 12/12
P(long | other)     =  2/6

P(yellow | lemon)   =  5/7
P(yellow | banana) = 9/12
P(yellow | other)     =   1/6
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To Classify An Instance

 not long, yellow , ? 
Let's call the vector not long, yellow the evidence E.
Ideally, we would get the a posteriori probability of each 
class and choose the class with the highest:
P(lemon | E),  P(banana | E), P(other | E).
This would require applying Bayes' rule as follows, e.g., for 
lemon:

P(lemon | E) =  P( E | lemon) P(lemon) / P(E)
However, we don't have P(E | lemon) in the given feature 
likelihoods we calculated.  
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Likelihood Computation

We could, in principle, compute P(E | lemon) using this:
P(not long, yellow | lemon) = 

P(not long | lemon and yellow) P(yellow | lemon).

But we don't have the first of these readily available, either.

It's a lot easier if we assume that P(long | lemon) and 
P(yellow | lemon) are independent.

Then we can approximate P(E | lemon) as
P(not long and yellow | lemon ) 

(1- P(long | lemon) )  P(yellow | lemon)

Univ. of Wash.
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Classification with N.B.

P(lemon | E) = P(E | lemon) P(lemon) / P(E)
 (1- P(long | lemon) )  P(yellow | lemon) P(lemon) / P(E)
= (1 - 0) ( 5/7 ) (7/25) / P(E)
= (35/185) / P(E) = (1/5) / P(E)

Similarly,
P(banana | E) 

(1 - P(long | banana)) P(yellow | banana) P(banana) / P(E)
= (1 - 12/12) (9/12) (12/25) / P(E)
= 0
and P(other | E) 
(1 - long| other)) P(yellow | other) P( other) / P(E)
= (1 - 2/6) (1/6) (6/25) / P(E)
= (2/3)(1/25) / P(E) = (2/75) / P(E)
Clearly  P(lemon | E) gets a higher value than P(other | E),
and so the new instance is classified as a lemon (assuming we are using the 
Maximum A Posteriori (MAP) probability classification rule).
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Exercise
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priors:
P(lemon) =  7 / 25
P(banana) = 12 / 25
P(other) =  6 / 25

P(long) = 14 / 25
P(yellow) = 15 / 25

likelihoods of individual features:
P(long | lemon)   = 0
P(long | banana) = 12/12
P(long | other)     =  2/6

P(yellow | lemon)   =  5/7
P(yellow | banana) = 9/12
P(yellow | other)     =   1/6

Using the same Naïve Bayes
classifier,

Classify:
  not long, not yellow , ? 

1. What is P(lemon | E) ?
2. What is P(banana | E) ?
3. What is P(other | E) ?

What is argmaxf P(f | E) ?
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A Difficulty When Using 
Frequencies for Probabilities
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Long Yellow class count

No No Lemon 2

No No Banana 0

No No Other 3

No Yes Lemon 5

No Yes Banana 0

No Yes Other 1

Yes No Lemon 0

Yes No Banana 3

Yes No Other 2

Yes Yes Lemon 0

Yes Yes Banana 9

Yes Yes Other 0

Compute the priors:
P(lemon) =  7 / 25
P(banana) = 12 / 25
P(other) =  6 / 25

P(long) = 14 / 25
P(yellow) = 15 / 25

Compute the likelihoods of individual features:
P(long | lemon)      = 0
P(long | banana)    = 12/12
P(long | other)        =  2/6

P(yellow | lemon)   =  5/7
P(yellow | banana) = 9/12
P(yellow | other)     =   1/6

Small training sets tend to lead to some zeros in the counts, even when the 
underlying distributions have nonzero probabilities.
These zeros can wreak havoc with Naive Bayes classifiers.
Therefore ....
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Using Maximum Likelihood to 
Estimate the Probability Distribution

Instead of taking the count ratios as probabilities, use them as evidence 
for underlying distributions and estimate those distributions.

A set of distributions can be parameterized by .  So choose the best : 
the one that has the highest likelihood given the training data.

best argmax  P( | T)  

We can estimate the parameters of  by including phantom examples in 
our training set to make sure that no count is 0.   By adding 1 to every 
count, we get frequency ratios that generally do not add up to 1 any 
more, and so we normalize the new ratios so they DO add up to 1.

Univ. of Wash.
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Naïve Bayes Classifiers with 
Continuous-Valued Features
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Let X = x0, x1, ..., xn-1  be a vector in Rn.  

We can still use Bayes' rule to compute posterior values useful 
for classification.

However, the values will be probability density values rather 
than probabilities.
P(y | X) = P(X | y)P(y) / P(X)

The Naïve Bayes assumption of conditional independence is 
P(X | y) = P(x0 | y) P(x1 | y)  P(xn-1 | y)

Le
Learning

Continuous Features with 
Gaussian Distributions
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Let's assume each xi in  x0, x1, ..., xn-1  comes from a 
probability distribution given by the probability density 
function (pdf):  P(xi = x | y=c) = exp((x - i,c)2 / 4i,c

2)

The Naïve Bayes assumption is
P(X | y=c) = exp((x - 0,c)2 / 40,c

2) ... exp((x - n-1,c)2 / 4n-1,c
2) 

Take the logarithm of both sides:
ln P(X | y=c) =(x - 0,c)2 / 40,c

2 +...+ (x - n-1,c)2 / 4n-1,c
2

To classify example X, find
argmaxc P(X | y=c) P(y=c).

Le
Learning Example of N.B. with Gaussians
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Consider the case of the Northwest Hiking Supply Company, trying to 
increase their online sales.  When a potential customer visits their website, 
they want to be able to predict, after 1 minute, whether that visitor is a 
hot prospect, so that they can offer a special "closer" promotion. For 
training purposes, any past visitor who has purchased something during 
the visit is considered "hot."

By the end of 60 seconds at the website, they have two feature values: 
"dwell time" (D) and "number of product revisits" (R).  The range of values 
of D is 0 to 60, and for R it is 0 to 10.  From these two measures, they want 
to classify the visitor as "hot" (H) or "not" (N).

Le
Learning Training Data for NW Hiking Example
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Total visitors: 200
Hot prospects: 5
Not hot: 195

Let's assume we have obtained the means and standard deviations of each of the two 
subpopulations by the usual methods for getting the parameters of a normal distribution 
from samples.

Mean dwell time for hot prospects: 38
Mean dwell time for not: 13

Standard deviation for hot prospects: 10
Standard deviation for not: 7

Mean repeat count for hot prospects: 6
Mean repeat count for not: 2

Standard deviation for hot prospects: 3
Standard deviation for not: 2

We'll assume that features D and R are conditionally independent.

Le
Learning Graphical Display for 2-Feature Example.
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Naïve Bayes Classifiers require only a relatively small amount of 
training examples (linear in the number of features times number 
of values, in the discrete case).

Whereas the full joint distribution typically requires (2n) 
training examples, which is intractable when n is large (e.g., n > 
50).

Naïve Bayes classification is fast.

The Naïve Bayes assumption of conditional independence, while 
not usually an accurate model of the underlying joint distribution, 
still works remarkably well.


