
3/25/2017

1

Le
Learning

Machine Learning:
Neural Networks

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring, 2017

© S. Tanimoto and University of Washington, 2017

Le
Learning

Learning: Neural Nets

Outline

• History of neural networks research
• The Perceptron
• Examples
• Training algorithm
• Fundamental training theorem
• Two-level perceptrons
• 2-Level feedforward neural nets with

sigmoid activation functions
• Backpropagation and the Delta rule.

Univ. of Wash. 2

Le
Learning

Learning: Neural Nets 3

The Biological Neuron

The human brain contains approximately 1011 neurons.
Activation process:
Inputs are transmitted electrochemically across the input synapses
Input potentials are summed.
If the sum reaches a threshold, a pulse moves down the axon. (The neuron has

“fired”.)
The pulse is distributed at the axonal arborization to the input synapses of

other neurons.
After firing, there is a refractory period of inactivity.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 4

History of Neural Networks Research

1943 McCulloch & Pitts model of neuron.
ni(t+1) = (j wij nj(t) - i), (x) = 1 if x 0;

0, otherwise.
1962 Frank Rosenblatt’s book gives a training algorithm for finding
the weights wij from examples.

Principles of neurodynamics: Perceptrons and the theory of brain mechanisms

1969 Marvin Minsky and Seymour Papert publish Perceptrons, and
prove that 1-layer perceptrons are incapable of computing image
connectedness.
1974-89, 1982: Associated content-addressable memory.

Backpropagation: Werbos 1974, Parker 1985, Rumelhart, Hinton, &
Williams 1986.
Univ. of Wash.

Le
Learning

Learning: Neural Nets 5

The Perceptron

y = 1 if wi xi ;
0, otherwise.

y

x1
w1

x2
w2

xn
wn

outputthresholding

summationinputs
weights

Univ. of Wash.

Le
Learning

Learning: Neural Nets 6

Perceptron Examples:
Boolean AND and OR.

x1

x2

xk

 y = x1 x2 ... xk

 = k - 1/21

1

1

x1

x2

xk

y = x1 x2 ... xk

 = 1/21

1

1

xi {0, 1}

Univ. of Wash.

3/25/2017

2

Le
Learning

Learning: Neural Nets 7

Perceptron Examples:
Boolean NOT

x y = x

 = - 1/2
-1

xi {0, 1}

Univ. of Wash.

Le
Learning

Learning: Neural Nets 8

Perceptron Example:
Template Matching

 = 25 -

xi {-1, 1}-1 -1 1 -1 -1

-1 1 -1 1 -1

1 1 1 1 1

1 -1 -1 -1 1

1 -1 -1 -1 1

Recognizes the letter A provided
the exact pattern is present.

weights w1 through w25

Univ. of Wash.

Le
Learning

Learning: Neural Nets 9

Perceptron Training Sets

Let X = X+ U X- be the set of training examples.

SX = X1, X2, ..., Xk, ... is a training sequence on X, provided:

(1) Each Xk is a member of X, and

(2) Each element of X occurs infinitely often in SX.

An element e occurs infinitely often in a sequence

z = z1, z2, ...

provided that for any nonzero integer i, there exists a
nonnegative integer j such that there is an occurrence of e in

zi, zi+1, ... , zj.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 10

Perceptron Training Algorithm
Let X = X+ U X- be the set of training examples. and let SX = X1, X2, ..., Xk, ... be
a training sequence on X.

Let wk be the weight vector at step k.

Choose w0 arbitrarily. For example. w0 = (0, 0, ..., 0).

Each each step k, k = 0, 1, 2, . . .

Classify Xk using wk.

If Xk is correctly classified, take wk+1 = wk.

If Xk is in X- but misclassified, take wk+1 = wk - ck Xk.

If Xk is in X+ but misclassified, take wk+1 = wk + ck Xk.

The sequence ck should be chosen according to the data. Overly large constant values
can lead to oscillation during training. Values that are too small will increase training
time. However, ck = c0/k will work for any positive c0.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 11

Perceptron Limitations
Perceptron training always converges if the training data X+ and X- are linearly
separable sets.

The boolean function XOR (exclusive or) is not linearly separable. (Its positive
and negative instances cannot be separated by a line or hyperplane.) It cannot
be computed by a single-layer perceptron. It cannot be learned by a single-
layer perceptron.

x1

x2

X+ = { (0, 1), (1, 0) }

X- = { (0, 0), (1, 1) }

X = X+ U X-

Univ. of Wash.

Le
Learning

Learning: Neural Nets 12

Two-Layer Perceptrons

x1

 = 0.5

+1

x2

 = 0.5

+1

-1

-1

+1

+1

 = 0.5

y = XOR(x1, x2)

Univ. of Wash.

3/25/2017

3

Le
Learning

Learning: Neural Nets 13

Two-Layer Perceptrons (cont.)

Two-Layer perceptrons are computationally powerful.

However: they are not trainable with a method such as the
perceptron training algorithm, because the threshold units
in the middle level “block” updating information; there is no
way to know what the correct updates to first-level weights
should be.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 14

Two-Layer Feedforward Networks
with Sigmoid Activation Functions

We get: the power of 2-level perceptrons,

plus

the trainability of 1-level perceptrons (well, sort of).

These are sometimes called (a) “backpropagation networks,”
(because the training method is called backpropagation) and
(b) “two-layer feedforward neural networks.”

Univ. of Wash.

Le
Learning

Learning: Neural Nets 15

Structure of a Backprop. Network

Univ. of Wash.

Le
Learning

Learning: Neural Nets 16

Hidden Node Input Activation

As with perceptrons, a weighted sum is
computed of values from the previous level:

hj = i wij xi

However the hidden node does not apply a
threshold, but a sigmoid function ...

Univ. of Wash.

Le
Learning

Learning: Neural Nets 17

Sigmoid Activation Functions

Instead of using threshold functions, which are
neither continuous nor differentiable, we use a
sigmoid function, which is a sort of smoothed
threshold function.

g1(h) = 1/(1 + e-h)

Univ. of Wash.

Le
Learning

Learning: Neural Nets 18

An Alternative Sigmoid Func.

g2(h) = tanh(h) = (eh – e-h)/(eh + e-h)

Univ. of Wash.

3/25/2017

4

Le
Learning

Learning: Neural Nets 19

Sigmoid Function Properties

Both g1 and g2 are continuous and differentiable.

g1(h) = 1/(1 + e-h)

g1(h) = g1(h) (1 – g1(h))

g2(h) = tanh(h) = (eh – e-h)/(eh + e-h)

g2(h) = 1 – g2(h)2

Univ. of Wash.

Le
Learning

Learning: Neural Nets 20

Training Algorithm

Each training example has the form Xi, Ti, were Xi is the
vector of inputs, and Ti is the desired corresponding output
vector.

An epoch is one pass through the training set, with an
adjustment to the networks weights for each training
example. (Use the “delta rule” for each example.)

Perform as many epochs of training as needed to reduce the
classification error to the required level.

If there are not enough hidden nodes, then training might not
converge.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 21

Delta Rule

For each training example Xi, Ti, Compute F(Xi), the outputs based
on the current weights.

To update a weight wij, add wij to it, where

wij = j Fj (is the training rate.)

If wij leads to an output node, then use

j = (tj – Fj) g’j(hj)

If wij leads to a hidden node, then use “backpropagation”:
j = gj(hj) k k wkj

The k in this last formula comes from the output level, as computed above.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 22

Performance of
Backpropagation

Backpropagation is slow compared with 1-layer perceptron
training.

The training rate can be set large near the beginning and
made smaller in later epochs.

In principle, backpropagation can be applied to networks with
more than one layer of hidden nodes, but this slows the
algorithm much more.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 23

Setting the Number of Hidden Nodes

The number of nodes in the hidden layer affects generality
and convergence.

If too few hidden nodes: convergence may fail.

Few but not too few nodes: possibly slow convergence but
good generalization

Too many hidden nodes: Rapid convergence, but “overfitting”
happens.

Overfitting: the learned network handles the training set, but
fails to generalize effectively to similar examples not in the
training set.

Univ. of Wash.

Le
Learning

Learning: Neural Nets 24

Applications of 2-Layer
Feedforward Neural Networks

These networks are very popular as trainable
classifiers for a wide variety of pattern data.

Examples:

•Speech recognition and synthesis

•Visual texture classification

•Optical character recognition

•Control systems for robot actuators

Univ. of Wash.

