Markov Decision Processes

CSE 415: Introduction to Artificial Intelligence
University of Washington
Spring 2017

Presented by S. Tanimoto, University of Washington, based on material by Dan Klein and Pieter Abbeel - University of California.

Outline

- Grid World Example
- MDP definition
- Optimal Policies
- Auto Racing Example
- Utilities of Sequences
- Bellman Updates
- Value Iterations

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states s in S
 - A set of actions a in A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s', s, a)
 - Also called the model or the dynamics

\[
T(s_{11}, E, \ldots) = 0 \\
T(s_{31}, N, s_{11}) = 0.8 \\
T(s_{31}, N, s_{21}) = 0.1 \\
T(s_{31}, N, s_{41}) = 0.1
\]

\[T\] is a Big Table!
11 X 4 x 11 = 484 entries

For now, we give this as input to the agent
Markov Decision Processes

• An MDP is defined by:
 – A set of states s in S
 – A set of actions a in A
 – A transition function T(s, a, s')
 • Probability that a from s leads to s', i.e., P(s'| s, a)
 • Also called the model or the dynamics
 – A reward function R(s, a, s')
 • Sometimes just R(s) or R(s')

Cost of breathing

R(s_{32}, N, s_{33}) = -0.01
R(s_{32}, N, s_{32}) = -1.01
R(s_{33}, E, s_{43}) = 0.99

For now, we also give this to the agent

What is Markov about MDPs?

• “Markov” generally means that given the present state, the future and the past are independent

• For Markov decision processes, “Markov” means action outcomes depend only on the current state

Andrey Markov (1856-1922)

Policies

• In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

• For MDPs, we want an optimal policy π*: S → A
 – A policy π gives an action for each state
 – An optimal policy is one that maximizes expected utility if followed
 – An explicit policy defines a reflex agent

• Expectimax didn’t compute entire policies
 – It computed the action for a single state only

Optimal Policies

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

R(s) = -2.0
R(s) = -0.4
R(s) = -0.03
R(s) = -0.01
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree

MDP Search Trees

- Each MDP state projects an expectimax-like search tree

Utilities of Sequences

- What preferences should an agent have over reward sequences?
 - More or less?
 - Now or later?
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

\[
\begin{align*}
\text{Worth Now} & : 1 \\
\text{Worth Next Step} & : \gamma \\
\text{Worth In Two Steps} & : \gamma^2
\end{align*}
\]

Stationary Preferences

- Theorem: if we assume stationary preferences:
 \[
 [a_1, a_2, \ldots] \succ [b_1, b_2, \ldots] \\
 \iff [r_1, a_1, a_2, \ldots] \succ [r_1, b_1, b_2, \ldots]
 \]
- Then: there are only two ways to define utilities
 - Additive utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \ldots \)
 - Discounted utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \)

Quiz: Discounting

- Given:
 \[
 \begin{array}{c|c|c|c|c|c|c}
 & a & b & c & d & e \\ \hline
 10 & & & & & \end{array}
 \]
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

Quiz 1: For \(\gamma = 1 \), what is the optimal policy?
Quiz 2: For \(\gamma = 0.1 \), what is the optimal policy?
Quiz 3: For which \(\gamma \) are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g., life)
 - Gives nonstationary policies (\(\gamma \) depends on time left)
 - Discounting: use \(0 < \gamma < 1 \)
 \[
 U([r_0, r_1, r_2, \ldots]) = \sum_{t=0}^{\infty} \frac{r_t}{\gamma^t} \leq R_{\text{max}} / (1 - \gamma)
 \]
 - Smaller \(\gamma \) means smaller "horizon" – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states \(S \)
 - Start state \(s_0 \)
 - Set of actions \(A \)
 - Transitions \(P(s'|s,a) \) or \(T(s,a,s') \)
 - Rewards \(R(s,a,s') \) (and discount \(\gamma \))

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs

- Value Iteration
- Policy Iteration
- Reinforcement Learning

Optimal Quantities

- The value (utility) of a state s: $V^*(s) = \text{expected utility starting in } s \text{ and acting optimally}$
- The value (utility) of a q-state (s,a): $Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally}$
- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:
 $$V^*(s) = \max_a Q^*(s,a)$$
 $$Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$
 $$V^*(s) = \max_a \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Racing Search Tree
Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: Deep parts of the tree eventually don't matter if $\gamma < 1$

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Value Iteration

Computing Time-Limited Values

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal

The Bellman Equations

- Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over
Value Iteration

- Bellman equations **characterize** the optimal values:
 \[V^*(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \]

- Value iteration **computes** them:
 \[V_{k+1}(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method.
 → ... though the \(V_k \) vectors are also interpretable as time-limited values.

Value Iteration Algorithm

- Start with \(V_0(s) = 0 \):
- Given vector of \(V_k(s) \) values, do one ply of expectimax from each state:
 \[V_{k+1}(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right] \]
- Repeat until convergence
 - Complexity of each iteration: \(O(S^2A) \)
 - Number of iterations: \(\text{poly}(|S|, |A|, 1/(1-\gamma)) \)
 - Theorem: will converge to unique optimal values

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
Convergence

- How do we know the V_k vectors will converge?
- Case 1: If the tree has maximum depth M, then V_k holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1}, can be viewed as depth $k+1$ expectimax results in nearly identical search trees
 - The max difference happens if big reward at $k+1$ level
 - That last layer is at best all R_{max}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)
 $$\pi^*(s) = \arg \max_a \sum \left[T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \right]$$
- This is called policy extraction, since it gets the policy implied by the values
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:
 \[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- How should we act?
 - Completely trivial to decide!

- Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[v_{k+1}(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma v_k(s')] \]

- Problem 1: It’s slow – \(O(S^2A)\) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values

VI → Asynchronous VI

- Is it essential to back up all states in each iteration?
 - No!

- States may be backed up
 - many times or not at all
 - in any order

- As long as no state gets starved...
 - convergence properties still hold!!

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
Asynch VI: Prioritized Sweeping

• Why backup a state if values of successors same?
• Prefer backing a state
 – whose successors had most change

• Priority Queue of (state, expected change in value)
• Backup in the order of priority
• After backing a state update priority queue
 – for all predecessors